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Abstract

Under both normative and descriptive decision theory, tontines and tontine-
related retirement income products have proven their superiority to classical annu-
ity products. In the present paper, we show that benefits of a properly designed
tontine dominate the benefits of an equally priced annuity as the pool size tends
to infinity, leading individuals to prefer tontines with a sufficiently large pool size
to annuities under utility preferences which are increasing and continuous in con-
sumption. Such preferences include but are not limtied to cumulative prospect
theory and generalized expected utility preferences, which we use as examples to
illustrate our theoretical findings. Our results present an interesting puzzle which
we call “tontine puzzle”, raising the question why the development of the tontine
market is still in its infancy in practice.
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1 Introduction

Tontines are financial products, where a part of the returns is obtained via the inheri-

tance of wealth from non-surviving participants. Tontines date back to the 17th century

(Weir (1989)) when they were staged as public financial instruments to raise funds. As

many countries are faced with the challenges caused by an ageing society, OECD (2020)

points out the importance of longevity risk-sharing schemes between retirees and/or pen-

sion providers in the retirement landscape. Modern tontines and tontine-linked products

which allow a better longevity risk sharing between the policyholders and retirement

products providers have inevitably gained increasing popularity both in practice and

among academic research. Despite its upward moving trend, the development of the ton-

tine market is still rather in its infancy in practice. Table 1 provides an overview of several

limited tontines offered in practice. For example, Nuovalo offers a so-called LifePools

Name Provider Country URL to official website
Tontine Pension Tontine Trust Ireland https://tontine.com/

La Tontine Le Conservateur France https://www.conservateur.fr/

LifePools Nuovalo Ltd. U.S.A. https://www.nuovalo.com/

GuardPath

Longevity Solutions Guardian Capital Canada https://www.guardiancapital.com

Table 1: Some tontines offered in practice.

platform to retirement benefit providers. Using this platform, providers are enabled

to include mortality risk sharing schemes such as tontines in their portfolio of retire-

ment plans. As a second example, GuardPath Longevity Solutions offers a “GuardPath

Modern Tontine”, “Hybrid Tontine Series” and “GuardPath Managed Decumulation” to

beneficiaries.

In many recent academic papers comparing the attractiveness of tontines (or tontine-

linked products) with annuities, tontines have proven their superiority to annuity prod-

ucts (cf. Stamos (2008), Hanewald et al. (2013), Milevsky and Salisbury (2015), Chen

et al. (2019, 2020b, 2021), Bommier and Schernberg (2021) and Weinert and Gründl

(2021)). However, in all of these articles, a specific (descriptive or normative) utility or

value function is applied, making the superiority of tontines only applicable with cer-

tain restrictions. Further, the comparison is typically conducted between optimal (i.e.

utility/value-maximizing) tontines and optimal annuities (see below for detailed elabo-

rations on the existing literature). In this paper, we focus on practically implementable

versions of annuities and tontines, in particular constant annuities and natural tontines
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as introduced in Milevsky and Salisbury (2015). In a natural tontine, retirement benefits

are chosen such that individuals receive a constant retirement income for life if mortality

evolves as expected. Constant annuities and natural tontines are easy to communicate

and can be considered a compromise between theoretical optimality and practical suit-

ability. With these products, we show that the retirement benefits of a tontine dominate

those of an equally priced annuity under mild assumptions as the pool size tends to infin-

ity, making the benefits of the tontine preferable under any utility preferences preserving

the monotonicity of consumption if the pool size of the tontine is sufficiently large. The

wide general theoretical support for tontines (or tontine-like products) and their limited

widespread in practice present a rather interesting puzzle, which we name as “Tontine

Puzzle”.

Assuming fair pricing and life-cycle utility preferences with temporal risk neutrality (eco-

nomic agents are only risk averse about consumption, but not about their lifetime)1 and

concave utility preferences for consumption, annuities are the preferable retirement prod-

uct from a retiree’s perspective (cf. Yaari (1965) and Milevsky and Salisbury (2015)).

However, under various realistic assumptions, many recent studies find at least partial

tontinization combined with partial annuitization to be preferred to full annuitization

under various scenarios:

• Assuming concave utility preferences for consumption, Stamos (2008), Hanewald

et al. (2013), Milevsky and Salisbury (2015), Bernhardt and Donnelly (2019), Chen

et al. (2019, 2020b, 2021) and Chen and Rach (2022) verify this argument under

temporal risk neutrality if realistic risk loadings are charged for annuities.

• Chen et al. (2020a) find that individuals who are subject to subjective mortality be-

liefs might perceive tontines as more attractive than annuities. This is particularly

the case for individuals underestimating their peers’ remaining lifetimes compared

to the insurer.

• Assuming concave utility preferences for consumption, Bommier and Schernberg

(2021) show that individuals exhibiting temporal risk aversion prefer at least a

fraction of their wealth to depend on realized survival probabilities (i.e. prefer

investing in tontine-linked products), even in perfect markets with fair insurance.

1Under temporal risk aversion, economic agents are not only risk averse about consumption, but
also about their lifetime. In contrast, under temporal risk neutrality, agents are only risk averse about
consumption, but not their lifetime.
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• Finally, Weinert and Gründl (2021) consider pensioners with multi cumulative

prospect theory preferences and find this result to be valid for fair tontines and

annuities if individuals’ wealth falls into a certain range.

In total, both normative and descriptive approaches suggest that tontines can at least

be a beneficial supplement to annuities. However, all the above literature deals with

optimal tontines under very specific utility assumptions, which limits their results in

generality and applicability to the retirement market: First, in practice, the retirement

products provided by insurance companies might be optimal (utility- or value optimizing)

for some customers, but certainly not for all. Insurers typically provide a pre-selected

set of benefits which are easy to communicate with most of customers. Second, even

if insurers were willing to offer all types of utility-maximizing payoff structures (which

would be a tremendous effort) to policyholders, they probably behave sub-rationally with

their decisions, e.g. due to psychological bias or computational limitations (see, e.g., Hu

and Scott (2007) and Liu et al. (2022)). Third and finally, the use of one particular

(normative or descriptive) utility preference limits the results in their generality, as not

all individuals exhibit only one and the same type of preferences. Hence, in the current

study, we therefore focus on practically easy-to-communicate and easily implementable

natural tontines and constant annuities. The rather simple structure of these retirement

benefits enables us to derive more general conclusions on the superiority of tontines than

under a specific utility maximization approach.

We find that tontine benefits dominate equally priced annuity benefits under mild as-

sumptions as the pool size tends to infinity, implying that the superiority of tontines with

a sufficiently large pool is valid for any utility preference which is increasing and con-

tinuous in consumption. Such preferences include normative approaches like generalized

life-cycle utility preferences allowing for temporal risk aversion (from now on referred to

as EUT), as long as utility functions are increasing and continuous (but not necessarily

concave), as well as descriptive approaches such as cumulative prospect theory (CPT).

The main assumptions for this result are a sufficiently large tontine pool and the presence

of risk loadings or distorted survival probabilities underestimating best-estimate survival

probabilities. These main driving factors for the superiority of tontines over annuities

are consistent with the existing literature on optimal tontines.

Our results put forward the demand for tontines and tontine-linked products. This can

also partly resolve the annuity puzzle, one of most complex puzzles in modern economy.

It describes the discrepancy between the theoretically optimal demand for annuities (see
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e.g. Yaari (1965), Peijnenburg et al. (2016)) and the empirically observed demand for

annuities (see e.g. Inkmann et al. (2010)). According to the pioneering article Yaari

(1965), individuals should fully annuitize all wealth unless there is a bequest motive.

Since it has been pointed out in Chen and Rach (2022) that a bequest motive does not

change the preference order of annuities and tontines under expected utility, we disregard

bequest motives in this article. In the past years, economists across the world have

extensively studied the annuity puzzle and delivered a variety of new insights (e.g. Hu

and Scott (2007), Agnew et al. (2008), Beshears et al. (2014) and Salisbury and Nenkov

(2016)). Our paper contributes to this literature by providing a rationale why a high

percentage of annuitization is not optimal.

The remainder of this article is organized as follows. In Section 2, we present the essential

notation used throughout the article. In Sections 3 and 4, we present our main results

and demonstrate them theoretically and numerically in two well-known settings. Section

5 concludes the paper and is followed by a technical appendix.

2 Notations

We consider an individual at retirement age x (in whole years) at time t = 0 whose

remaining lifetime is given by Tx . This individual is endowed with an initial wealth

W0 > 0 which is used to buy either an immediate annuity or a tontine, i.e. the present

value of future consumption may not exceed the initial wealth. The maximum age that

any individual can reach is denoted by ω (e.g. 120).

In an annuity product, an insurer pools many independent retirees and promises each of

them a life-long, regular stream of retirement benefits. Hence, an annuity delivers the

payoff

bc(k) := 1{Tx>k}c(k), k = 0, 1, . . . , ω − x (1)

to a single retiree, where c(k) is a deterministic payout function specified at contract

initiation, and 1{B} is an indicator function that is equal to one if event B occurs and

zero otherwise.

In a tontine product (Milevsky and Salisbury (2015)), the insurer issues a retirement

payment scheme at time 0 to n ∈ N0 homogeneous contract holders of the same age x

and of the same gender. At the beginning of each year k ∈ {0, 1, . . . , ω − x} , each
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surviving individual obtains a deterministic payment d(k) (specified at time 0) and an

additional mortality credit given by (n−N(k))d(k)
N(k)

, where N(k) denotes the number of

survivors at time k . The resulting annual payoff at any time k ∈ {0, 1, . . . , ω − x} is

given by

bd(k) =

1{Tx>k}
n

N(k)
d(k), N(k) > 0,

0, N(k) = 0.
(2)

The payoff (2) breaks down to an annuity payoff if the pool consists of only one individual,

i.e. n = 1 . Throughout this article, we assume the future lifetimes of individuals to be

independent.

Throughout this article, we assume that individuals and retirement product providers

rely on (potentially) different estimates of future survival probabilities. To calculate the

expected present value of future benefits, the insurer relies on the risk-neutral pricing

approach (cf. e.g. Cairns et al. (2006)) to account for prudence: It chooses a risk-neutral

probability measure Q which typically differs from the real-world measure P in such

a way that Q(Tx > t) > P(Tx > t) , i.e. survival probabilities under the risk-neutral

measure systematically exceed best-estimate survival probabilities. For a number of

whole years k , we use sx(k) := P(Tx > k) to denote the best-estimate k -year survival

probability under P and sQx (k) := Q(Tx > k) to denote the k -year survival probability

of a currently x -year old under the risk-neutral measure Q .

The single premiums of retirement plans are then given by the expected present value

of future benefits under the risk-neutral measure Q . For detailed calculations of the

premiums, see e.g. Chen et al. (2019). The premium of the annuity the insurer charges

is given as follows:

P c
0 = EQ

[
ω−x∑
k=0

v(0, k)c(k)1{Tx>k}

]
=

ω−x∑
k=0

v(0, k)sQx (k) c(k),

where v(0, k) is a deterministic discount function from time k to time 0 . In case of a

constant annuity, i.e. c(t) ≡ c , an individual with an initial wealth level W0 obtains an

annuity payment c = W0/
∑ω−x

k=0 v(0, k)s
Q
x (k) , satisfying P c

0 = W0 .

For the premium of the tontine, we rely on the fact that (N(t) − 1 | Tx > t) ∼
Bin(n− 1, sQx (t)) under Q , given the independence of the future lifetimes of the tontine
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participants. Therefore, we obtain the premium as (cf. Chen et al. (2019)):

P d
0 = EQ

[
ω−x∑
k=0

v(0, k)
nd(k)

N(k)
1{Tx>k}

]

=
ω−x∑
k=0

v(0, k)
(
1−

(
1− sQx (k)

)n)
d(k).

In this paper, we will mainly consider the so-called natural tontine introduced by Milevsky

and Salisbury (2015). With a natural tontine, the deterministic payoff d(k) is deter-

mined such that the retirement benefits to a single individual remain constant over time

if mortality evolves as expected (under the insurer’s perspective). In other words, we

choose the payoff d(k) as d(k) := EQ
[
1{Tx>k}

]
d0 = sQx (k)d0 , where d0 is a constant

making the budget constraint binding. The natural tontine and constant annuity can be

considered a compromise between theoretical optimality and practical suitability. For a

detailed analysis of utility-maximizing annuity and tontine payoffs, we refer interested

readers e.g. to Stamos (2008), Hanewald et al. (2013), Milevsky and Salisbury (2015),

Bernhardt and Donnelly (2019) and Chen et al. (2019, 2020b).

To illustrate the impact of the pricing measure Q on the premiums, consider the Gom-

pertz mortality model which is parameterized by the modal age at death m and the

dispersion coefficient b (see Gompertz (1825)). The mortality rate in this model is given

by

µx+t =
1

b
e

x+t−m
b . (3)

Note that the mortality rate is decreasing in the modal age at death m . To achieve a

prudent risk-neutral measure Q , we therefore assume that the insurer chooses a modal

age mQ > m , because this choice results in sQx (k) > sx(k) for all (x, k) if bQ = b . For

example, consider a 65-year old individual and the parameters m = 88.721 and b = 10

taken from Milevsky and Salisbury (2015) along with a constant risk-free interest rate of

1% p.a.. Then, we can choose mQ such that the proportional risk loading of a constant

annuity is 4% . We obtain mQ = 89.885 . For a natural tontine, we get a proportional

risk loading of approximately 0.0056%.

Individuals’ subjective survival probabilities may as well differ from best-estimate sur-

vival probabilities, where underestimations tend to be more frequent, but overestimations

may occur as well (see e.g. O’Brien et al. (2005), Greenwald and Associates (2012), Elder

(2013), Wu et al. (2015)). This steam of literature also suggests that individuals’ esti-
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mates for themselves differ compared to their beliefs about others’ life expectancy (see

e.g. O’Brien et al. (2005), Greenwald and Associates (2012)). To capture this aspect, we

allow individuals to have different survival probabilities for themselves and their peers.

In the following, let ŝx(k) be the subjective k -year survival probability that a single

agent estimates for an x -year-old peer. Let s̄x(k) be the subjective survival probability

which agents assign to themselves. Hence, we assume that individuals may not be fully

rational and build their own subjective estimations regarding their longevity.

3 Main result and its consequences

We start by proving the central property of the tontine payoff.

Theorem 3.1 (Benefits in the limit). Assume that survival probabilities under the

risk-neutral measure exceed the subjective survival probabilities that an agent estimates

for an x-year-old peer at all times, i.e.

ŝx(k) < sQx (k) for all k ∈ {1, . . . , ω − x}. (4)

Then, as the pool size n tends to infinity, the benefits of a natural tontine with initial

value W0 exceed the benefits of a constant annuity with initial value W0 at all times.

Proof: See Appendix A.1.

Remark 3.2. The results in Theorem 3.1 are rather general in their formulation and

include a variety of special cases which we want to explain in detail below.

• First, if there are no subjective probabilities (in particular for others), i.e. sx(k) =

ŝx(k) = s̄x(k) , and sx(k) < sQx (k) , then the subjective probabilities coincide with

best-estimate probabilities. In this case, the condition stated in inequality (4) is

fulfilled naturally.

• If there are no risk loadings, the insurer relies on best-estimate probabilities for

pricing, i.e. sQx (k) = sx(k) . Then, the condition stated in (4) translates into

agents’ underestimating the survival probabilities of their peers and thus subjectively

overestimating the tontine payoff.2

2A similar result has already been found by Chen et al. (2020a) for more specific utility preferences.
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• Not all individuals will underestimate their peers’ remaining lifetimes compared to

the insurer, i.e. there are multiple situations in which Assumption (4) is not ful-

filled. First, if an individual’s subjective beliefs coincide with the insurer’s pricing

measure, i.e. ŝx(k) = sQx (k) , then both retirement plans will deliver the same ben-

efits in the limit, but, for finite pool sizes, the annuity will typically be preferred

(see Milevsky and Salisbury (2015)). A special case of this situation is the follow-

ing: If there are no subjective probabilities regarding others and no risk loadings,

i.e. sx(k) = sQx (k) = s̄x(k) , we are in a fair pricing framework (see also Milevsky

and Salisbury (2015) and Chen et al. (2020b)). This case, although analytically

convenient, is, however, rather unrealistic, because insurers typically charge risk

loadings from policyholders for annuities. Second, if individuals overestimate their

peers’ remaining lifetimes compared to the insurer, i.e. ŝx(k) > sQx (k) , the tontine

payoff will appear lower and therefore less attractive.

Based on the result in Theorem 3.1, we can conclude the following.

Corollary 3.3 (Utility preferences). Assume condition (4). Then, for any utility

preference that is continuous and increasing in consumption, and for any combination of

a constant annuity and a natural tontine (except full annuitization), there exists a pool

size n0 such that an individual prefers the combination to an equally priced constant

annuity and an equally priced natural tontine to the combination, if the pool size in the

tontine is at least n0 .

Proof: See Appendix A.2.

The result of Corollary 3.3 might hint that the benefits of a natural tontine stochastically

dominate the benefits of a constant annuity. However, when comparing a random benefit

X to a constant benefit c , we can only have first- or second-order stochastic dominance

between c and X if P (X ≥ c) = 1 , which is clearly not the case if we compare the

tontine to the annuity benefit, i.e. if we set X = nd(k)/N(k) . Hence, Corollary 3.3 does

not imply a first- or second-order stochastic dominance between annuities and natural

tontines.

Examples for the utility preferences described in Corollary 3.3 include but are not lim-

ited to life-cycle utility preferences as used in Yaari (1965) or Milevsky and Salisbury

(2015), generalized life-cycle utility preferences as used e.g. in Bommier (2006) and Bom-

mier et al. (2011), but also descriptive models like cumulative prospect theory as used
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inTversky and Kahneman (1992) and Hu and Scott (2007) (assuming that the under-

lying utility functions are continuous and increasing, which they are in all the named

references). In the following section, we consider two examples of such preferences.

4 Examples

4.1 Cumulative prospect theory

CPT was originally introduced by Tversky and Kahneman (1992). It relies on a value

function V which is concave above a reference point Γ and convex below this reference

point, accounting for the concept of loss aversion. Additionally, for the calculation of the

CPT value, real world probabilities are transformed to subjective probabilities.

To evaluate retirement plans under CPT, following Hu and Scott (2007), we evaluate the

total discounted retirement benefits at each time k compared to the total initial wealth

W0 used as reference level. Thus, individuals make a profit if they live long enough for

the retirement benefits to exceed their initial investment and they suffer a loss if they

die before a sufficient retirement income is received.

4.1.1 Annuity

Hu and Scott (2007) consider the discounted net value of an annuity from an individual’s

perspective at each time k as

Xc(k) =
k∑

j=0

v(0, j)c(j),

where c(j) is the payoff of a single annuity, v(0, k) is the deterministic discount factor

from time k to time 0 , and Xc(k) the total discounted payoff the annuity holder obtains

in case of death between k and k+1 . As the initial wealth level is used as reference level,

for a smaller value k , the investment in the retirement product usually leads to a loss.

The value Xc(k) then occurs with the subjective probability πk := s̄x(k) · (1− s̄x+k(1)) ,

the probability for an individual to die between k and k + 1 from this individual’s

perspective. The CPT level of the annuity is then given by

CPTc =
ω−x∑
k=0

πk · V (Xc(k)). (5)
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Note that, due to the deterministic payments of c(j) and thus V (Xc(k)) being deter-

ministic as well, no simulation is needed to compute the CPT value of the annuity.

4.1.2 Tontine

Taking the same approach as for the annuity, the (random) net value of a tontine at time

k (given alive) can be expressed as

Xd(k) =
k∑

j=0

v(0, j)
nd(j)

N(j)
.

We assume that individuals estimates their own survival probabilities independently

of the survival probabilities of their peers, allowing us to apply different probability

distortions to both. The overall CPT value is then obtained by the following expression:3

CPTd =
ω−x∑
k=0

πk · E [V (Xd(k)) | Tx > k] (6)

=
ω−x∑
k=0

πk · E

[
V

(
k∑

j=0

v(0, j)
nd(j)

N(j)

) ∣∣∣ Tx > k

]
,

where the expectation again relies on subjective probabilities. Unlike annuities, the

tontine payments depend on the realized number of the survivors at each time k =

0, 1, . . . , ω − x . In order to compute the CPT value, we therefore need to rely on simu-

lation techniques.

4.1.3 The main corollary

Under the preferences specified above and noting that they are continuous and increasing

in consumption, we can immediately conclude the following.

Corollary 4.1 (Cumulative prospect theory). Assume condition (4). Then, for

any combination of a constant annuity and a natural tontine (except full annuitization),

there exists a pool size n0 such that an individual with CPT preferences prefers the

combination to an equally priced constant annuity and an equally priced natural tontine

to the combination, if the pool size in the tontine is at least n0 .

3The CPT value V (Xd(k)) is only defined for a living individual. Using the property E[X | B] =
E[X1B ]
P (B) for any set B occurring with positive probability and random variable X , we arrive at (6).
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Proof: See Appendix A.3.

4.1.4 Numerical analysis

In a standard CPT framework, it is typically assumed that individuals underestimate

probabilities close to 1 and overestimate probabilities close to 0. Furthermore, real-world

probabilities p are typically transformed using a weighting function w (cf. Tversky and

Kahneman (1992)). In the following, we will follow this approach and start by precising

the computation of the CPT values of the annuity and tontine:

• For the annuity, it holds Xc(0) < Xc(1) < Xc(2) < . . . , given c(j) > 0 for all

j = 0, 1, . . . . Therefore, for a probability weighting function w , we define

pk := sx(k) · (1− sx+k(1)), k ∈ {0, 1, . . . , ω − x}

π0 := w(p0)

πk := w(p0 + · · ·+ pk)− w(p0 + · · ·+ pk−1), k ∈ {1, 2, . . . , ω − x}.

With this representation, we can directly compute the CPT value of the annuity

(5).

• For the tontine, we use the fact that (N(k) | Tx > k) ∼ Bin(n − 1, sx(k)),

given that the future lifetimes of the individuals are independent. From simu-

lating N(j) , we obtain M different outcomes of Xd(k) , which we denote by

X
(1)
d (k) ≤ X

(2)
d (k) ≤ · · · ≤ X

(M)
d (k) . These outcomes occur with probabilities

P
(1)
k , P

(2)
k , . . . , P

(M)
k . Define Π

(1)
k := w(P

(1)
k ) and

Π
(j)
k := w(P

(1)
k + · · ·+ P

(j)
k )− w(P

(1)
k + · · ·+ P

(j−1)
k ), j = 2, . . . ,M.

Thus, we can compute the CPT level of the tontine (6) as

CPTd =
ω−x∑
k=0

πk ·
M∑
j=1

Π
(j)
k · V

(
X

(j)
d (k)

)
.

Following Tversky and Kahneman (1992), we consider the value function below:

V (X) =

(X − Γ)β, X ≥ Γ,

−λ · (Γ−X)β, X < Γ,
(7)
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where X is a risky prospect to be evaluated, λ > 1 the loss aversion parameter and

β ∈ (0, 1) controls the sensitivity towards gains and losses. Following Tversky and

Kahneman (1992) further, we consider the probability weighting function

w(p) =
pν

(pν + (1− p)ν)1/ν
, ν ∈ (0.28, 1], (8)

but refrain from distinguishing between gains and losses, an assumption frequently made

in the literature (cf. e.g. Ruß and Schelling (2018)). The lower bound for ν ensures that

the probability weighting function is strictly increasing in p . Note that ν = 1 delivers

w(p) = p . Note that this probability weighting function leads individuals to overestimate

probabilities close to zero and underestimate probabilities close to 1. In our context, this

means that the probability that an individual’s peers will survive extremely long will be

overestimated, whereas the probability that they die at early ages will be overestimated

as well. In particular, this violates (4).

As a mortality model, we consider the Gompertz mortality model which is parameterized

by the modal age at death m and the dispersion coefficient b (equation (3) and Gompertz

(1825)). Furthermore, we rely on the parameters summarized in Table 2.

Initial wealth Initial age Risk-free interest (p.a.)
W0 = 100 x = 65 i = 0.01

Loss aversion Sensitivity to gains/losses Probability weighting
λ = 2.25 β = 0.88 w(p) = (8), ν = 0.65

Gompertz law (P) Gompertz law (Q) Maximum age
m = 88.721, b = 10 mQ = 89.885, bQ = 10 ω = 120

Table 2: Base case parameters.

Below, we provide some justification for these parameters:

• For the probability weighting function, we use the parameters ν = 0.65 and ν = 1

following, for example, Ruß and Schelling (2018). Note that this is the mean of the

values 0.61 and 0.69 used by Tversky and Kahneman (1992).

• Following Tversky and Kahneman (1992), we set β = 0.88 and λ = 2.25 .

• For simplicity, we assume a constant annual interest rate. Therefore, we obtain

v(0, k) =
(

1
1+i

)k
=: vk as the k -year discount factor. We choose a fairly low value

to conform with the current situation in many countries.

12



• The Gompertz parameters b and m are chosen as in Milevsky and Salisbury

(2015). They result in a 5% probability for a 65-year old to reach age 100.

• To achieve a prudent risk-neutral measure Q , we follow the introductory numerical

example described in Section 2. To be precise, we choose mQ such that the propor-

tional risk loading of a constant annuity is 4% , close to a risk margin determined

for annuities in Chen et al. (2019). We obtain mQ = 89.885 . For a natural ton-

tine, we get a proportional risk loading of approximately 0.0056%. Note that the

subjective survival probabilities are determined by the choice of ν , which results

in both under- and overestimations of some best-estimate and risk neutral survival

probabilities.

• Under the Gompertz parameters specified, the probabilities to reach age 120 are

given by s65(55) = 1.34 ·10−10 and sQ65(55) = 1.63 ·10−9 . which is sufficiently close

to zero to assume a maximum age of 120.

To compare different retirement products, we rely on the certainty equivalent, the single

deterministic payment exceeding the initial wealth level which delivers the same CPT

value as some retirement product. To be precise, it is defined as V (CEj +W0) = CPTj

for j ∈ {annuity, tontine} . A positive certainty equivalent (an addition to the initial

wealth) speaks for the investment in the considered retirement product, while a negative

one (a subtraction from the initial wealth) means that holding on to the initial wealth is

preferred to buying a retirement plan.

In Table 3, we show the certainty equivalents of annuities and tontines with and without

risk loadings in dependence of the pool size n . The pool sizes are chosen within the

range of pool sizes considered in Qiao and Sherris (2013) who recommend a pool size

of at least 1000. Although assumption (4) is not necessarily fulfilled in this example

(since subjective probabilities may lead to over-and underestimations), we observe that

tontines are preferred to annuities under all parameter combinations except for the case

with no risk loadings and no subjective probabilities. Hence, these results numerically

confirm that the result of Theorem 4.1 may go beyond assumption (4) (in particular,

the results with subjective probabilities and no risk loadings). However, surprisingly,

we observe that subjective probabilities lead individuals to prefer tontines with smaller

pool sizes. In other words, in this case, individuals seek a volatile rather than a smooth

retirement income. This finding is particularly new to the literature analyzing tontines

under expected utility (Milevsky and Salisbury (2015) and Chen et al. (2020b)). Under

subjective probabilities, the minimum pool size (which also deliver the highest CE) is

13



λ = 1 λ = 2.25

Risk loadings

n = 100
ν = 0.65 (1.06, 6.63) (−9.06,−6.15)
ν = 1 (−2.32, 0.08) (−9.39,−7.73)

n = 500
ν = 0.65 (1.06, 6.14) (−9.06,−6.39)
ν = 1 (−2.32, 0.117) (−9.39,−7.685)

n = 1000
ν = 0.65 (1.06, 6.01) (−9.06,−6.45)
ν = 1 (−2.32, 0.121) (−9.39,−7.680)

No risk loadings

n = 100
ν = 0.65 (4.03, 5.06) (−7.11,−6.58)
ν = 1 (0.228, 0.205) (−7.219,−7.252)

n = 500
ν = 0.65 (4.03, 4.50) (−7.11,−6.87)
ν = 1 (0.228, 0.222) (−7.219,−7.229)

n = 1000
ν = 0.65 (4.03, 4.36) (−7.11,−6.94)
ν = 1 (0.228, 0.224) (−7.219,−7.224)

Table 3: Certainty equivalents of the annuity and the tontine. We rely on the base case
parameters introduced in Table 2. In case of no risk loadings, Q equals P .

therefore 2. With risk loadings and no subjective probabilities, CEs are increasing in the

pool size. Here, we find again 2 to be the minimum pool size required for the tontine to

be preferred to the annuity. Our results are consistent with Chen et al. (2020a) who also

find 2 or 3 to be the minimum pool size for an agent subject to misspecified probabilities

to prefer tontines to annuities.

Finally, note that Hu and Scott (2007) find loss aversion to be the main driving factor

behind the unattractiveness of annuities. The negative certainty equivalents mostly ob-

tained under loss aversion in Table 3 are consistent with this result. Nevertheless, we

observe in Table 3 that it is possible that a tontine delivers a positive certainty equivalent

while that of the annuity is negative.
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4.2 Generalized expected utility theory

To evaluate different retirement plans under EUT, we consider generalized life-cycle

utility preferences allowing for temporal risk aversion (see Bommier (2006) and Bommier

et al. (2011)), i.e. agents evaluate the expected discounted lifetime utility

E

[
Φ

(
ω−x∑
k=0

1{Tx>k}ρ(0, k)u (C(k))

)]
,

where u and Φ are increasing and continuous functions, ρ(0, k) is a subjective discount

factor from time 0 to time k and C(k) is a (possibly stochastic) consumption process.

The case with a linear Φ results in the traditional life cycle utility preferences as used

e.g. in Yaari (1965). A concave (convex) function Φ means that individuals are risk

averse (loving) with respect to the length of life. Note that the typical assumption in

the literature is for u and Φ to be concave, but we only require these functions to be

increasing and continuous in order to transfer Theorem 3.1 to the above preferences.

In the above expectation, similar to CPT, we assume that agents may be subject to a

misspecification of their own and others’ survival probabilities (which do not necessarily

need to coincide).

Similar to the CPT valuation, payoffs of retirement plans need to satisfy the budget

constraint that their initial value (determined under a risk-neutral measure) shall not

exceed the initial wealth W0 .

4.2.1 The main corollary

Corollary 4.2 states that risk-averse, risk-neutral and risk-loving agents prefer a natural

tontine to a constant annuity under assumption (4) and a sufficiently large pool size.

Corollary 4.2 (Generalized expected utility). Assume condition (4). Then, for

any combination of a constant annuity and a natural tontine (except full annuitization),

there exists a pool size n0 such that an individual with EUT preferences prefers the

combination to an equally priced constant annuity and an equally priced natural tontine

to the combination, if the pool size in the tontine is at least n0 .

Proof: See Appendix A.4.
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4.2.2 Numerical analysis

In this subsection, we want to study EUT numerically. We fix the utility preferences as

follows:

• Utility with respect to consumption is specified as a function of the constant relative

risk aversion (CRRA) type, i.e.

u(y) =
y1−γ

1− γ
,

where γ ̸= 1 is the constant degree of relative risk aversion. We choose a frequently

used value of γ = 3 .

• Temporal risk aversion is captured by an exponential utility function of the form

Φ(y) = −1

θ
e−θy.

where we choose θ = 0.035 in a similar way as Bommier et al. (2011).

• For the subjective discount factor, we assume that it equals the risk-free inter-

est rate. For such time preferences, a constant annuity is optimal under utility

preferences with temporal risk neutrality (cf. Yaari (1965)).

The parameters are summarized in Table 4. In addition to these, we rely on the param-

eters in Table 2.

Temporal risk aversion Risk aversion (consumption) Subjective discount factor
θ = 0.035 γ = 3 i = 0.01

Table 4: Base case parameters (generalized expected utility).

In this section, we compare retirement plans by certainty equivalent perpetuities, pro-

viding constant payments till the maximum age (regardless of whether alive or dead):

Φ

(
ω−x∑
k=0

ρ(0, k)u(CE)

)
= E

[
Φ

(
ω−x∑
k=0

1{Tx>k}ρ(0, k)u (C(k))

)]

Solving this for CE delivers

CE =

(
1− γ∑ω−x

k=0 ρ(0, k)
Φ−1

(
E

[
Φ

(
ω−x∑
k=0

1{Tx>k}ρ(0, k)u (C(k))

)])) 1
1−γ

.
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In order to capture the underestimation of one’s own and peers’ survival probabilities

required by (4), we vary the modal age at death m , because survival probabilities under

the Gompertz mortality law are increasing in this variable. First, note that the base

case delivers an approximate remaining lifetime of 20.70 years. Fixing m̄ = m̂ = 82, we

obtain an underestimation of the average life expectancy by approximately 5.13 years,

which falls into the range of the male and female values provided in O’Brien et al.

(2005). We provide the resulting certainty equivalents in Table 5. We observe that, once

γ = 0.5 γ = 3

Risk loadings

n = 100
m̄ = m̂ = 84 (0.395, 0.418) (8.40, 9.56)
m = m̄ = m̂ (0.5464, 0.5525) (7.71, 7.68)

n = 500
m̄ = m̂ = 84 (0.394, 0.417) (8.40, 9.60)
m = m̄ = m̂ (0.5448, 0.5511) (7.70, 7.94)

n = 1000
m̄ = m̂ = 84 (0.394, 0.417) (8.40, 9.60)
m = m̄ = m̂ (0.5451, 0.5514) (7.70, 7.95)

No risk loadings

n = 100
m̄ = m̂ = 84 (0.405, 0.424) (8.74, 9.77)
m = m̄ = m̂ (0.5590, 0.5587) (8.01, 7.33)

n = 500
m̄ = m̂ = 84 (0.405, 0.425) (8.73, 9.81)
m = m̄ = m̂ (0.56041, 0.56035) (8.01, 7.86)

n = 1000
m̄ = m̂ = 84 (0.406, 0.426) (8.73, 9.82)
m = m̄ = m̂ (0.55929, 0.55926) (8.01, 7.95)

Table 5: Certainty equivalents of the annuity and the tontine. We rely on the base case
parameters introduced in Table 2 and 4. In case of no risk loadings, Q equals P .

condition (4) is fulfilled, the tontine is preferred to the annuity regardless of the pool size

(considered in the table), except for the case with risk loadings, no subjective mortality

and a risk aversion of 3. This case requires a pool size larger than 100 for the tontine

to be preferred to the annuity. We find a pool size of 115 to be sufficient. Only with no

risk loadings and no subjective mortality beliefs the constant annuity is preferred to the

natural tontine. In Table 6, we summarize the minimum pool sizes for the tontine to be

preferred. The case with risk loadings, no subjective mortality and a risk aversion of 3

requires a particularly large pool size in this example, because the difference in survival
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γ = 0.5 γ = 3
Risk loadings

m̄ = m̂ = 84 n0 = 2 n0 = 5
m = m̄ = m̂ n0 = 2 n0 = 115

No risk loadings
m̄ = m̂ = 84 n0 = 2 n0 = 8

Table 6: Certainty equivalents of the annuity and the tontine. We rely on the base case
parameters introduced in Table 2 and 4. In case of no risk loadings, Q equals P .

probabilities resulting from only the risk loadings is less pronounced than in the presence

of subjective mortality and due to the relatively higher degree of relative risk aversion.

These circumstances lead an individual to prefer an annuity over tontines with a smaller

pool size.

5 Conclusion

We show that retirement benefits of a properly designed tontine with an infinite pool

size dominate the benefits of an equally priced annuity. The main assumption for this

finding is the presence of risk loadings for retirement benefits or subjective mortality

beliefs underestimating survival probabilities compared to the insurer. This result is a

generalization of the findings of previous articles in different normative and descriptive

model setups: Particularly under realistic risk loadings, at least partial tontinization

combined with partial annuitization is preferred to full annuitization if the tontine pool

is large enough. Therefore, this article raises a so-called tontine puzzle, referring to

the discrepancy between the theoretically optimal demand for tontines and their actual

development in practice.
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A Proofs

A.1 Proof of Theorem 3.1

The constant annuity payoff is given by c = W0/
∑ω−x

k=0 v(0, k)s
Q
x (k) . The tontine payoff

is given by d(k) = EQ
[
1{Tx>k}

]
d0 = sQx (k)d0 , where

d0 =
W0∑ω−x

k=0 v(0, k)s
Q
x (k)

(
1− (1− sQx (k))n

) →
n→∞

c.

Note that the tontine payoff therefore converges as follows from a living agent’s perspec-

tive:

nd(j)

N(j)
=

d0s
Q
x (j)

N(j)/n
→

n→∞

csQx (j)

ŝx(j)
> c a.s. for all j ∈ {0, 1, . . . , ω − x}.

□

A.2 Proof of Corollary 3.3

Let U(·) be an increasing and continuous real-valued function and assume that an in-

dividual invests ηW0 in the annuity and (1 − η)W0 in the tontine, where η ∈ (0, 1) .
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Then, by continuity, we have

lim
n→∞

U

({
nd(j)

N(j)

}
j∈{0,1,...,ω−x}

)
= U

({
csQx (j)

ŝx(j)

}
j∈{0,1,...,ω−x}

)
,

and

lim
n→∞

U

({
(1− η)

nd(j)

N(j)
+ ηc

}
j∈{0,1,...,ω−x}

)

= U

({
(1− η)

csQx (j)

ŝx(j)
+ ηc

}
j∈{0,1,...,ω−x}

)
.

Due to the monotonicity of U , we then have

U

({
csQx (j)

ŝx(j)

}
j∈{0,1,...,ω−x}

)
> U

({
(1− η)

csQx (j)

ŝx(j)
+ ηc

}
j∈{0,1,...,ω−x}

)
> U({c}j∈{0,1,...,ω−x})

because csQx(j)
ŝx(j)

> c for all j ∈ {0, 1, . . . , ω − x}. Due to basic properties of convergence

(see, e.g., Schulz (2011)), there must therefore exist some pool size n0 such that the

utility of a finite tontine with pool size larger or equal to n0 exceeds the utility of

the combination and such that the utility of the combination exceeds the utility of the

annuity.

□

A.3 Proof of Corollary 4.1

Note that, due to the continuity and monotonicity of V , cumulative prospect theory

preferences are a special case of the preferences covered in Corollary 3.3. The CPT level

of the tontine is given by

CPTd =
ω−x∑
k=0

πk · E [V (Xd(k)) | Tx > k]

=
ω−x∑
k=0

πk · E

[
V

(
k∑

j=0

v(0, j)
nd(j)

N(j)

) ∣∣∣ Tx > k

]
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→
n→∞

ω−x∑
k=0

πk · V

(
k∑

j=0

v(0, j)c
sQx (k)

ŝx(k)

)
,

where we apply the continuity property in the convergence result. Due to the mono-

tonicity of V , we then obtain

ω−x∑
k=0

πk · V

(
k∑

j=0

v(0, j)c
sQx (k)

ŝx(k)

)
>

ω−x∑
k=0

πk · V

(
k∑

j=0

v(0, j)c

)
= CPTc

which proves the claim by basic properties of convergence. Now let again η ∈ (0, 1)

denote the fraction of wealth invested in the annuity. Analogously, we can show that

ω−x∑
k=0

πk · E

[
V

(
k∑

j=0

v(0, j)

(
(1− η)

nd(j)

N(j)
+ ηc

)) ∣∣∣ Tx > k

]

→
n→∞

ω−x∑
k=0

πk · V

(
k∑

j=0

v(0, j)

(
(1− η)c

sQx (k)

ŝx(k)
+ ηc

))
>

∑ω−x
k=0 πk · V

(∑k
j=0 v(0, j)c

)
<
∑ω−x

k=0 πk · V
(∑k

j=0 v(0, j)c
sQx(k)
ŝx(k)

) .

□

A.4 Proof of Corollary 4.2

Due to the continuity of Φ and u , we get

E

[
Φ

(
ω−x∑
k=0

1{Tx>k}ρ(0, k)u

(
nd(k)

N(k)

))]
→

n→∞
E

[
Φ

(
ω−x∑
k=0

1{Tx>k}ρ(0, k)u

(
c
sQx (k)

ŝx(k)

))]
.

Due to the monotonicity of Φ and u , we then obtain

E

[
Φ

(
ω−x∑
k=0

1{Tx>k}ρ(0, k)u

(
c
sQx (k)

ŝx(k)

))]
> E

[
Φ

(
ω−x∑
k=0

1{Tx>k}ρ(0, k)u (c(k))

)]
.
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Now let again η ∈ (0, 1) denote the fraction of wealth invested in the annuity. Then,

analogously, we get

E

[
Φ

(
ω−x∑
k=0

1{Tx>k}ρ(0, k)u

(
(1− η)

nd(k)

N(k)
+ ηc

))]

→
n→∞

E

[
Φ

(
ω−x∑
k=0

1{Tx>k}ρ(0, k)u

(
(1− η)c

sQx (k)

ŝx(k)
+ ηc

))]
> E

[
Φ
(∑ω−x

k=0 1{Tx>k}ρ(0, k)u (c(k))
)]

< E
[
Φ
(∑ω−x

k=0 1{Tx>k}ρ(0, k)u
(
c s

Q
x(k)
ŝx(k)

))]
.

□
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