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Abstract 

 

An individual tontine account (ITA) is an investment product similar to a 
conventional brokerage account, but with the added feature of mortality pooling 
through participation in an open-ended fair tontine.  The ITA exploits the property 
that participants in a fair tontine need not be confined to a common investment 
portfolio or to a common payout method.  Instead, participants are allowed to select 
and trade investments as they wish and to choose from a variety of payout methods, 
with each participant's results being largely unaffected by the investment and payout 
choices of others.  We envision the ITA as being complementary to an individual 
retirement account (IRA), allowing retirees to derive extra income from savings 
without taking on additional investment risk and to obtain lifetime income at a lower 
cost than with comparable insurance products.  The mortality-pooling features of 
ITAs compare favorably to those of insurance products.  The cost per dollar of 
income is lower.  The opportunity for individual choice is increased.  Fees are 
transparent rather than opaque.  Accounting is transparent and conveyed simply on 
account statements.  The downside of ITAs is that income from mortality pooling is 
not guaranteed, and a participant might experience less income than hoped for if 
other participants live longer than expected. 

ITAs represent a new arrow in the quiver for addressing global retirement needs 
and may address the “annuity puzzle” by giving retirees a more transparent, lower-
cost alternative to insurance-based products. 
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The investor is dead… Long live the investor! 

Introduction 

The phrase “the king is dead… long live the king!” is said to have originated in France 
upon the death of King Louis XII in the year 1515 to convey the notion that the country is 
never without a monarch because the transfer of sovereignty from one king to another occurs 
instantaneously the moment a king dies.1  This notion carries over to tontines, in which 
there is a clear and instantaneous transfer of ownership rights in shares of the tontine 
scheme from dying members to surviving members. 

A tontine is a financial arrangement with 17th century origins in which the parties 
involved agree to share the proceeds of a collective investment pool in a pre-described way.  
Notably, the arrangement mandates that the ownership of a member’s share in the tontine 
is forfeited at death, with the proceeds apportioned among the surviving members.  
Members die, but the tontine pool lives on – perhaps forever if designed to run in perpetuity.  
Similar to the concept of annuitization, tontines offer investors a way to pool mortality risk, 
but directly among themselves as opposed to via an insurance company. 

Tontines largely fell out of use early in the 20th century after self-dealing and fraud on 
the part of tontine providers prompted regulators to virtually ban them.  Yet such problems 
can be addressed by proper design and oversight, and this recognition has led to renewed 
interest in tontines as a product. 

Several authors have made contributions to specific tontine designs.  Our focus here is 
not so much on any particular design, however.  Rather, our intent is to explore the 
boundaries of tontine design – or more specifically, the boundaries of fair tontine design. 

From their origins as lottery-like propositions to more recent innovations that engineer 
annuity-like payout streams, tontines have mostly been thought of as highly specialized 
offerings in which a prospectus would describe the specific terms of both the investment 
and the payout scheme.  Most tontine designs in the literature (including tontine-like 
concepts such as pooled annuity funds and group self-annuitization schemes) have generally 
shared two common assumptions – that the scheme in question is associated with: 1) a 
particular investment fund in which all members invest, and 2) a specific payout method 

                                       
1 “Le roi est mort!… Vive le roi!”  Variations of this phrase existed prior to this, dating as far back as 1422.  

A history of the phrase can be found in Kantorowicz (1957). 



  3 

that applies to all.2  In many ways, these tontines appear similar to managed payout mutual 
funds that have the added twist of mortality pooling.   

While we acknowledge that such specialized solutions have appeal in specialized 
situations (tontine pensions, for example), there is no reason per se that tontines must be 
packaged in such a confined manner.  As theorized in Sabin (2010) and Donnelly et al. 
(2014), the fair-tontine principle allows members to individually select their own investment 
portfolios and payout methods.  We seek to advance this idea in practical terms by applying 
the fair-tontine principle to the concept of brokerage accounts that are perpetually open to 
new members, in which individuals are freely allowed to invest in virtually any investment 
of their choosing, to trade in their accounts as they wish, and to choose from a wide array 
of payout methods.  Such tontine arrangements, which we call individual tontine accounts, 
or ITAs, can be fair to all members regardless of the investment and payout choices of the 
other members.  Moreover, an individual member’s results are largely unaffected by the 
investment choices of the other members.  Among other potential uses, we envision that 
ITAs could serve as a special type of mortality-pooled Individual Retirement Accounts 
(IRAs), allowing retirees to derive extra income from their savings without taking on 
additional investment risk, and giving them the option to secure annuity-like lifetime income 
from their savings. 

Fair Tontines 

We define a “fair” tontine as one in which the expected value of the gain or loss that a 
member experiences as a result of mortality pooling is zero for each member.  That is, each 
member receives a “fair” bet in the probabilistic sense.3 

The total return of a tontine investment is a function of two components: 1) the amount 
of investment income that is earned and capital gains/losses that occur, and 2) the amount 
of mortality gains/losses that are credited.  It is the second component that makes the 
tontine return different from that of a regular investment.  We use the more consumer-

                                       
2 See, for example:  Donnelly (2015), Donnelly et al. (2013), Forman and Sabin (2014), Forman and Sabin 

(2016), Gründel and Wandt (2017), Milevsky and Salisbury (2015), Milevsky and Salisbury (2016), Piggott 
et al. (2005), and Stamos (2008). 

3 Milevsky and Salisbury (2016) make a technical distinction between the terms “fair” and “equitable.”  The 
tontine pool discussed in their paper has a finite life.  As a result, there will unavoidably be a little money 
left over when the last member dies, which inures to the benefit of the tontine provider or perhaps some 
other party, but not to the benefit of the tontine members.  Thus, the expected value of a member’s mortality 
gains and losses is slightly negative and therefore not exactly “fair” as we (or they) define it.  Nevertheless, 
the tontine is “equitable” in that no member or group of members has an advantage over any other.  On 
the other hand, because our ITA pool is perpetual, no money is ever leftover.  For this reason, the ITA is 
not only “equitable,” it is also “fair.” 
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friendly term “tontine gain” to refer to this second component – the tontine gain reflects 
the extra amount credited to a member’s account due specifically to having invested in a 
tontine.  Members suffer complete tontine losses when their account balances are forfeited 
upon death, but surviving members enjoy tontine gains when the proceeds of these 
forfeitures are shared among them. 

For a tontine to be fair, the expected value of tontine gains and losses must be zero for 
each member.  This equality, which may be described as a “fairness constraint,” leads to 
another principle of fair tontines: The expected value of the total return of each member’s 
investment is the same as it would be if the investment had instead been made outside of 
the tontine (in the latter case, this includes transfer of the balance at death to the investor’s 
heirs).  While the expected values are the same, investing in a tontine changes the 
conditional distribution of outcomes – those who live long lives do better by participating 
in the tontine, while those who die early do worse. 

Satisfying the fairness constraint requires that the forfeited account balances of deceased 
members be transferred to the surviving members in an actuarially neutral (unbiased) way, 
taking into account each member's relative stake in the pool and probability of dying.  As 
a simplified example, suppose an individual “Alice” wishes to make an investment over a 
given period.  Assume that Alice's probability of dying during the period is 𝑞.  Assume 
further that the value of Alice’s investment at the end of the period is 𝑠.  If Alice makes 
her investment within a regular account, her balance at the end of the period would simply 
be 𝑠, regardless of whether she lives or dies.  But if Alice makes her investment within a 
tontine, her balance at the end of the period would be a random amount 𝑆 that depends 
on who died during the period.  If Alice dies, she forfeits her investment, and her balance 
at the end of the period is 𝑆 = 0.  But if she survives, her balance 𝑆 depends on which of 
the other members may have died (if any).  For the tontine to be fair, the expected value 
of her balance must equal 𝑠, the value it would be if she had invested outside the tontine.  
Thus: 

𝑠 = 𝑞 × 0 + (1 − 𝑞) × Ε[𝑆 | Alice survived], 

where E[𝑆 | Alice survived] is the expected value of Alice's balance 𝑆 conditioned on her 
survival.  Solving for it gives: 

E[𝑆 | Alice survived] = 𝑠
1 − 𝑞 = 𝑠(1 + 𝑟), 

where 𝑟 = 𝑞 (1 − 𝑞)⁄  is Alice’s nominal tontine yield.  Alice's nominal tontine gain is 
𝑠(1 + 𝑟) − 𝑠 = 𝑟𝑠, meaning her nominal tontine yield 𝑟 times her balance 𝑠.  The actual 
tontine gain that Alice receives is a random amount that depends on who died, but the 
expected value of that gain, conditioned on her survival, is 𝑟𝑠.  Since 𝑞 is bounded by the 
range 0 < 𝑞 < 1, 𝑟 is a positive value.  It is easy to see that the nominal yield 𝑟 can be 



  5 

significant.  For example, if Alice's probability of dying over the period is 40%, her nominal 
yield is 𝑟 = 0.4 (1 − 0.4)⁄ = 66.67%.  In other words, if Alice survives, her expected balance 
would be two-thirds higher by investing in the tontine than it would be by investing in a 
regular account. 

In an ITA, tontine gains are computed and distributed periodically at some convenient 
interval, such as monthly, quarterly, or yearly.  The fairness constraint is applied during 
each period and reflects the members’ probabilities of dying during that period.  Since 
mortality rates increase with age, each member's nominal tontine yield similarly increases 
with age, and thus the advantage of investing in the ITA compared to a regular account 
grows with age.  Since the fairness constraint is applied to every period, the ITA can operate 
in an open-ended fashion, with new members allowed to join at the start of any period. 

Forfeiture Allocation 

The key to fair tontines lies in the allocation of forfeited balances, and several methods 
have been proposed in the literature.  Sabin (2010) and Donnelly et al. (2014) each present 
methods that exactly meet the fairness constraint for every member.  A key feature of these 
methods is that deaths are processed one at a time as they occur and become known.  The 
transfer of power discussed in our opening quote (“the king is dead… long live the king!”) 
makes a fit analogy in that it is, in theory, most accurate (as regards fairness) to transfer 
assets instantaneously as a death occurs.  On the other hand, we are concerned that such a 
method may be difficult to explain to prospective customers because the calculations 
involved in the instantaneous transfer are complex.  Because we are genuinely interested in 
the commercial success of tontines, we take such matters seriously. 

For this reason, we elect a less complicated method of forfeiture distribution that we 
feel is much easier for providers to explain and investors to understand.  This method, 
referred to as the “nominal-gain method” in Sabin and Forman (2016), is appealing in that 
all forfeiture allocations are easily decomposed into two transparent components: 1) a 
nominal tontine yield for each member, which is easily obtained from the tontine’s publicly 
disclosed mortality table, and 2) a common adjustment factor that accounts for the 
difference between the amount of forfeitures actually experienced by the pool and the 
amount that was expected per the mortality table. 

As discussed above, the first component – a member’s nominal tontine yield – is 𝑟 =
𝑞/(1 − 𝑞), where 𝑞 is the member’s probability of dying during the period.  The value of 𝑞 
depends on the member’s age and gender and is specified in the tontine’s publicly disclosed 
mortality table.  In dollar terms, each member's nominal tontine gain is 𝑟𝑠, where 𝑠 is the 
member’s balance at the end of the period. 
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We refer to the second component – the common adjustment factor – as the group gain, 
𝐺.  It is found by dividing the sum of all balances forfeited by those who died during the 
period by the sum of the nominal tontine gains of those who have survived.  That is, if we 
let 𝐴 denote the set of members who died during the period (the decedents) and 𝐴* (i.e., 
the complement of 𝐴) the set of members who did not die (the survivors), then the group 
gain is: 

                                            𝐺 =
∑ 𝑠,

 
,∈.

∑ 𝑟,𝑠,
 
,∈./

.                                           (1) 

In other words, the group gain 𝐺 is the ratio of the total amount forfeited by the decedents 
to the total of the nominal gains of the survivors.  This ratio is applied to the nominal gain 
of each survivor such that the actual tontine yield for surviving member 𝑗 becomes 𝐺𝑟,, 
and the actual tontine gain in dollars becomes 𝐺𝑟,𝑠,.  If the total amount forfeited by 
decedents is greater than the total nominal gains of survivors, 𝐺 will be greater than 1, and 
the survivors will all receive more than the nominal gains they anticipated.  But if the total 
amount forfeited by the decedents is less than the total of the nominal gains of survivors, 
𝐺 will be less than 1 and the survivors will receive less than the nominal gains they 
anticipated. 

This nominal-gain method of forfeiture allocation is simple, transparent, and readily 
perceived as being fair to all members.  Each member can look up her nominal tontine yield 
𝑟 in a table published in advance by the provider, and all members share the same group 
gain 𝐺 which is published by the provider at the end of the period.  Each member 
anticipates receiving a tontine gain which is close to her nominal amount 𝑟𝑠.  If her actual 
tontine gain is less than anticipated, say by 2% – meaning 𝐺 = 0.98 – then she knows that 
every other surviving member’s actual gain is also 2% less than anticipated.  Or if she learns 
that another member has received an actual gain that is higher than anticipated, say by 
2% – meaning 𝐺 = 1.02 – then she knows that her actual gain is also 2% higher than 
anticipated.  Thus, the perception is that all members are being treated fairly, since their 
actual tontine gains move in lockstep. 

While the nominal-gain method is readily perceived as being fair to all members, it is 
not strictly fair in an actuarial sense, at least not exactly.  When one looks carefully at the 
expected value of the tontine gain or loss that a member receives, one finds that some 
members have an expected value that is slightly positive, while other members have an 
expected value that is slightly negative.  That is, there is a bias that favors some members 
over others.  An analysis of this bias is provided in Sabin and Forman (2016).  The analysis 
is complicated, but for our purposes the bottom line is that the bias is negligible in a tontine 
pool of the size and type we consider for an ITA.  We can, for practical purposes, use the 
nominal-gain method and regard it as fair.  We choose the nominal-gain method for its 
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advantages of simplicity, transparency, and perceived fairness, and in doing so we accept 
its theoretical imperfection. 

Expanding the Boundaries of Fair Tontine Design 

An important, and perhaps surprising, feature of fair tontines is that a surviving 
member’s expected tontine gain depends only on her own balance 𝑠 and her own likelihood 
of dying 𝑞.  This follows from the simple observation that her expected tontine gain is 𝑟𝑠 =
𝑠𝑞 (1 − 𝑞)⁄ .  It does not matter who else is participating: young or old, male or female, 
individual or couple, rich or poor.  It also does not matter how others are participating: the 
size of their accounts, the investments they select, their trading activity, or the payout 
option they elect.  All that matters is her own balance and her own probability of death. 

Of course, the actual tontine gain will vary from its expected value since it is very 
unlikely that members will die in exactly the proportions and times given by the mortality 
assumptions.  Actual tontine gains will exhibit randomness.  For this reason, tontines 
require a large number of members to help ensure that actual mortality will be close to 
assumed mortality, which in turn will help ensure that actual tontine gains are close to 
expected tontine gains.  This reflects the law of large numbers, which predicts that when 
the number of members of the tontine pool is sufficiently large, the actual payouts to 
surviving members will be close to the expected values.4  This is one of the attractive 
features of ITAs – since they place relatively few restrictions on membership, the potential 
pool can potentially be very large indeed. 

Individual Tontine Accounts 

We envision ITAs as individually-owned investment brokerage accounts offered through 
a common tontine pool.  ITAs could be opened as individual retirement accounts or standard 
taxable accounts.  Like traditional brokerage offerings, the ITA offering is perpetually open-
ended such that new members may open new accounts at any time, and current members 
may similarly make additional investments at any time.  Thus, the individuals who make 
up the pool will change over time, and eventually newer generations will completely replace 
older generations.  Members may be individuals or couples – thus, ownership may be either 
individual or joint.5 

                                       
4  Of course, mortality assumptions are uncertain.  An individual’s idiosyncratic mortality risk can be 

effectively diversified away by pooling.  However, systematic mortality risk, the potential for aggregate 
mortality rates to differ from those assumed, cannot.  We address this in a later section. 

5 When ownership is joint, the probability of dying, 𝑞, represents the probability that both owners will have 
died.  This is readily determined by standard actuarial techniques. 
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Feature Summary 

The basic features and value proposition of an ITA can be summarized as follows.  An 
account holder can invest in whatever she wishes within some large collection of permitted 
liquid investments.  If an account holder dies (or if the second/last account holder dies, for 
an account held jointly), her account balance is forfeited.  But in each period that she 
survives, she receives a share of the balances forfeited by those who died during that period.  
An account holder can only withdraw according to a predetermined payout schedule.  This 
restriction is necessary to prevent a type of “reverse moral hazard” in which members who 
become seriously ill could otherwise elect to cash in their account just before they die.  The 
account holder chooses the payout schedule from some variety of options at the time she 
opens the ITA.  Note that depending on the type of payout schedule selected, it may be 
possible for her to live long enough that she never suffers a forfeiture event.  This will be 
true if she selects a fixed-term payout schedule and outlives the payout term.  Conversely, 
if she selects lifetime payouts, she can never avoid eventual forfeiture – but of course, this 
means that she may also benefit from a greater share of the amounts forfeited by others if 
she lives a long life. 

We envision that each ITA would include a subaccount that is external to the tontine 
pool to which a member’s tontine payouts would be transferred.  Thus, each ITA consists 
of a tontine subaccount and a regular (non-tontine) subaccount. 

Tontine Subaccount 

Members can contribute to their tontine subaccounts at any time, subject to any 
restrictions that also apply to new members.  These restrictions might include, for example, 
a maximum age beyond which members may not contribute or join, or a limit on the size 
of the balance that results from a contribution.6 

Members are generally free to select whatever investments they wish and are free to 
change these investments at any time by trading within the tontine subaccount.  We 
envision a range of permissible investments similar to those typically offered within IRAs, 
including stocks, bonds, exchange traded funds (ETFs), and mutual funds.  Permissible 
investments should be sufficiently liquid to facilitate the timely redistribution of forfeited 
account balances at death. 

Contributions to the tontine subaccount are irrevocable.  Monies cannot be withdrawn 
at will.  Rather, the member selects the payout schedule at the time the contribution is 
made, picking from a list of options offered by the ITA provider.  Once selected, the 
member’s payout option can never be accelerated, so as to prevent the “reverse moral hazard” 

                                       
6 Sabin and Forman (2016) discuss the technical considerations that might give rise to such restrictions. 
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issue mentioned previously.  However, it is permissible to allow members to change to a 
new payout option that decelerates their payout schedule, subject to restrictions similar to 
those for making additional contributions.  We envision that a wide variety of payout 
options could be made available, which could either be annuity-like or in the nature of 
simple term investments.  Examples of the former include lifetime payouts similar to 
immediate annuities, deferred lifetime payouts similar to longevity insurance, or payouts 
over a specified period similar to term annuities.7  An example of the latter is the election 
to receive a simple lump sum on some selected date in the future, in which case the member 
might also elect whether dividends or tontine gains earned over the term are to be paid out 
along the way or reinvested to the end of the term. 

The tontine subaccount is credited with interest, dividends, and capital gain 
distributions as they occur.  Upon death, the tontine subaccount is forfeited, liquidated, 
and redistributed in a prescribed way to the tontine subaccounts of surviving members.  
Surviving members receive these redistributed forfeitures as tontine gains.  Since forfeitures 
are always fully redistributed, the aggregate amount of tontine gains paid to the survivors 
always equals the aggregate amount of mortality losses forfeited by the decedents. 

Payouts from the tontine subaccount are always made to the member’s regular 
subaccount. 

Regular Subaccount 

The regular subaccount is wholly separate from the tontine pool.  Members are free to 
contribute to or withdraw from the regular subaccount as they please without restriction.8  
Beneficiaries may be named for the regular subaccount, who would inherit it upon the 
member’s death. 

Payouts from the tontine subaccount to the regular subaccount can be made in cash or 
as in-kind transfers of securities.  For example, if a member is due to receive a $3,000 payout 
from the tontine subaccount, this could be carried out by liquidating $3,000 worth of 
securities within the tontine subaccount and transferring the resulting cash to the regular 
subaccount, or it could be carried out by transferring $3,000 worth of securities from the 
tontine subaccount to the regular subaccount.  It is the member’s choice which method, or 

                                       
7 Because tontines do not involve insurance and no guarantor is involved, promises of fixed payout amounts 

are not possible.  Thus, any annuity-like payouts would necessarily be variable.  Naturally, the degree of 
variability will depend significantly on the volatility of the selected investment portfolio. 

8 If the ITA is registered as an IRA, any withdrawal restrictions or requirements imposed by IRA regulations 
may still apply. 
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what combination of the two methods, is to be used.  The member is likely to consider tax 
consequences and portfolio allocation when making the choice. 

Illustrating the Member Experience 

We illustrate the member experience using a simplified example of an ITA pool in which 
tontine gains are computed and distributed yearly.  We illustrate yearly processing for 
convenience only, recognizing that in practice the processing period might be more frequent.  
Forfeiture redistributions are based on member survival status at the end of each calendar 
year but processed with a three-month lag to allow the ITA administrator time to discover 
who died during the previous calendar year.  Thus, forfeiture processing occurs on March 
31 of each year, at which time forfeitures are apportioned and redistributed as tontine gains 
to those who survived through the end of the prior calendar year. 

Suppose the ITA administrator uses the mortality table shown in Table 1. 
Table 1: IAM Mortality Rate Table for 2019 Under Projection Scale G2 (excerpt) 

Age Male Female Age Male Female 
	⋮	 ⋮ ⋮ ⋮ ⋮ ⋮ 

70 0.011352 0.009200 71 0.012413 0.010047 
72 0.013670 0.010977 73 0.015144 0.012003 
74 0.016852 0.013153 75 0.018806 0.014480 
76 0.021021 0.016018 77 0.023529 0.017793 
78 0.026364 0.019854 79 0.029559 0.022275 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

Using this table, the administrator publishes the nominal tontine yields for each age and 
gender cohort for the current year as shown in Table 2.  These nominal tontine yields 𝑟 are 
determined by looking up the corresponding mortality rate 𝑞 for each cohort from Table 1 
and applying the formula 𝑟 = 𝑞 (1 − 𝑞)⁄ . 
Table 2: Nominal Tontine Yield Table for 2019 (excerpt) 

Age Male Female Age Male Female 
	⋮	 ⋮ ⋮ ⋮ ⋮ ⋮ 

70 0.011482 0.009285 71 0.012569 0.010149 
72 0.013859 0.011099 73 0.015377 0.012149 
74 0.017141 0.013328 75 0.019166 0.014693 
76 0.021472 0.016279 77 0.024096 0.018115 
78 0.027078 0.020256 79 0.030459 0.022782 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

Consider a 75-year old male, Samuel, who establishes an ITA account on January 1, 
2019 with a contribution of $100,000.  He elects to receive payouts as a lifetime income 
stream with annual payouts using an assumed interest rate of 4%.  We use annual payouts 
for convenience only, recognizing that many retirees might prefer monthly payouts.  Samuel 
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then directs his contribution to be invested in the securities and funds of his choice.  The 
ITA provider administers his account throughout the year, keeping track of gains and losses, 
reinvesting dividends and interest, taking note of which members have died, etc.  Samuel’s 
tontine subaccount statement as of March 31, 2020, the date of his first eligible payout, 
appears in Figure 1.  Let us step through it. 
Figure 1: Sample Account Statement 

 
The statement period is April 1, 2019 through March 31, 2020.  Samuel's contribution 

of $100,000.00 was made on January 1, 2019 and grew to a value of $102,613.86 on March 
31, 2019, as shown on this statement.  Details about how it grew to this amount would be 
shown on the statement for the prior period.  This statement shows a set of summarized 
transaction entries for this period reflecting market appreciation or depreciation, credited 
investment income, and realized capital gains.  Added together, these give an intermediate 
ending balance of $105,176.03 on March 31, 2020, before the effect of any tontine processing.  
Up to this point, the statement reflects only investment activity and looks like a regular 
investment account statement. 

Samuel survived the calendar year 2019 and thereby is eligible to receive his share of 
the pool’s yearly tontine gains.  He also is eligible to receive his stipulated payout, which is 
automatically transferred out of his tontine subaccount into his regular subaccount.  Note 
that his tontine gain and payout take place even if he died during the first quarter of 2020 
– he earned them by having survived the year 2019 and therefore his regular subaccount 
beneficiaries would inherit his payout (although his remaining tontine subaccount balance 
would be forfeited the next time forfeitures are processed, on March 31, 2021). 

The shaded box in Figure 1 shows how his tontine gain is computed.  First, his nominal 
tontine yield of 0.019166 for 2019 is selected by looking up the appropriate value for his 
cohort from Table 2.  This is multiplied by the group gain for 2019 of 0.999644 to give his 
actual tontine yield of 0.019159. 

Tontine Subaccount Statement As Of: March 31, 2020
Account Overview Tontine Gain (if alive as of December 31, 2019)

Value on March 31, 2019 102,613.86$    Your Nominal Tontine Yield for 2019 0.019166       
Market appreciation/depreciation $962.17 x Common Group Gain Factor for 2019 0.999644       
Dividends, interest, and capital gains 1,600.00$        = Your Actual Tontine Yield 0.019159       
Balance before tontine gain 105,176.03$    x Your Balance Before Tontine Gain 105,176.03$  

= Your Tontine Gain 2,015.07$      
Tontine gain 2,015.07$        
Balance before payout 107,191.10$    

Tontine payout (to regular subaccount) (10,017.44)$    Payout Option: Single Life Annuity 9.3454%
Value on March 31, 2020 97,173.66$      
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The group gain value was calculated using the accounting ledger shown in Table 3, in 
which the subscript 𝑗 denotes the 𝑗1ℎ member in the ledger.  First, the account balances 𝑠, 
of those members who died during 2019 are summed and found to be $15,200,088.61.  These 
balances are forfeited.  Next, the nominal tontine gain 𝑟,𝑠, is computed for each member 
who survived the year, and the resulting values are summed to give the total nominal gain 
of those who survived 2019.  This sum is found to be $15,205,501.77.  All of these balances 
𝑠, are measured on March 31, 2020, while instead the nominal tontine yields 𝑟, are for 
calendar year 2019.  In other words, these quantities are the entries for “balance before 
tontine gain” and “your nominal tontine yield for 2019,” respectively, that appear on each 
member's statement for this period.  Samuel’s entries in Table 3 appear in bold.9 
Table 3: ITA Member Ledger for 2019 (excerpt) 

 Died in 2019 (𝑗 ∈ 𝐴)  Survived 2019 (𝑗 ∈ 𝐴*) 
  𝑠,   𝑠,  𝑟,  𝑟,𝑠, 
 xxxxx.xx  xxxxx.xx 0.xxxxxx xxxx.xx 
 xxxxx.xx  xxxxx.xx 0.xxxxxx xxxx.xx 
 xxxxx.xx  105,176.03 0.019166 1,965.17 
 xxxxx.xx  xxxxx.xx 0.xxxxxx xxxx.xx 
	 ⋮ 	 ⋮ ⋮ ⋮ 
 xxxxx.xx  xxxxx.xx 0.xxxxxx xxxx.xx 

Totals 15,200,088.61    15,205,501.77 

The group gain 𝐺 for the year is found by dividing the total amount forfeited by those 
who died by the total nominal gains of those who survived.  In this example, 𝐺 =
$15,200,088.61/$15,205,501.77 = 0.999644.  Applying this factor to each survivor’s nominal 
gain ensures that the sum of the actual tontine gains credited to survivors matches the sum 
of the amounts forfeited by decedents.  Thus, Samuel’s actual tontine yield for the year is 
0.019166 × 0.999644 = 0.019159  and he is credited with an actual tontine gain of 
0.019159 × $105,176.03 = $2,015.07.  His new balance becomes $107,191.10. 

His payout is then calculated based on his selected payout option of a single life annuity.  
His life annuity payout rate (discussed further in the following section) for the year is 
9.3454%, making the payout amount $107,191.10 × 0.093454 = $10,017.44.  Subtracting 
this amount gives an end-of-period tontine subaccount balance of $97,173.66. 

                                       
9 We are implicitly assuming that each member makes a one-time contribution on January 1 of the year of 

enrollment and makes no subsequent contributions.  The general case of contributions made anytime requires 
a bit more bookkeeping, which we skip here for simplicity. 
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Simulating ITA Outcomes 

With a basic understanding of how ITAs work, we turn now to how ITAs perform.  Our 
goal is to illustrate that the ITA remains fair to all members regardless of their ages, genders, 
contribution amounts, contribution timing, investment choices, and payout choices, while 
also dutifully delivering payouts as prescribed.  To do this, we simulate ITA activity and 
outcomes by randomly selecting members from a population and randomly selecting 
investment returns from a distribution. 

In our simulation, the ITA opens for business on the first day of 2019.  We simulate the 
first 82 years of operation, covering the years 2019 to 2100, inclusive.  Forfeiture and payout 
processing occurs annually at the end of each year.  New members join at the start of each 
year.  We recognize that in practice an ITA might perform such processing and intake more 
frequently, perhaps monthly or quarterly, but we choose annual processing here for the sake 
of simplicity.  We also recognize that in practice, some amount of lag is needed between the 
end of the year and the time at which forfeiture processing takes place (as illustrated in the 
account statement of Figure 1), but to keep the simulation simple we ignore this detail. 

We use the 2012 IAM Basic mortality table with projection scale G2 (NAIC, 2013).  
This table determines each member’s nominal tontine yield.  The IAM table with projection 
scale is a generational table, meaning that an individual’s probability of death depends not 
only on age and gender, but also on year of birth.  The table projects decreasing probability 
of death (i.e., a longer life) as the birth year increases.  As a result, the nominal tontine 
yield for individuals of a given age and gender decreases with each year of ITA operation, 
because the probability of such individuals dying during the year decreases.  We envision 
that the ITA provider will publish, at the start of each year, a table that lists the nominal 
tontine yield for each age and gender for that year. 

Member Enrollment 

In our simulation, 1,000 new members are enrolled at the start of each year.  Thus, the 
simulation begins with 1,000 members at the start of 2019, has slightly less than 2,000 
members at the start of 2020 (2,000 less the number who died during 2019), has slightly 
less than 3,000 members at the start of 2021 (3,000 less than the number who died during 
2019 and 2020), and so on.  Eventually the number of members reaches a plateau, when it 
gets large enough that the number of members who die during a year offsets, on the average, 
the net inflow of new members. 

Each member who joins is randomly assigned parameters as follows: 

• Age:  a randomly assigned integer in the range of 65 to 85, inclusive, with all 
ages equiprobable.  By “age” we mean the age on January 1 of the year of entry. 
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• Gender:  male or female with equal probability.  For simplicity we assume all 
accounts are individually owned, meaning that we did not include any members 
with jointly-owned accounts in the simulation. 

• Initial balance:  a value ranging from $1,000 to $1,000,000 and selected according 
to a log-uniform distribution.  That is, the initial balance was selected as 1034+3, 
where 𝑈 is a uniform random number in the range of 0 to 1.  The log-uniform 
distribution was used because it results in a large number of members that want 
to contribute relatively small amounts.  For example, roughly one third of the 
new members wish to contribute less than $10,000, and roughly two thirds wish 
to contribute less than $100,000.  Only a small fraction wish to contribute 
amounts near $1,000,000.  It is our guess that something comparable to this will 
occur in practice – many members desiring small amounts, a few members 
desiring large amounts.  Of course, in practice we would not expect a nice 
structure like log-uniform; we would expect it to be much more irregular.  We 
use the log-uniform distribution here for convenience. 

• Portfolio:  one of three portfolios, each equiprobable: 100% stock; 100% bond; 
50% stock and 50% bond.   

• Payout schedule:  one of two payout schedules, each equiprobable:  10-year lump 
sum; a life annuity.  Details of each schedule are given below. 

Lump sum.  A member who has the 10-year-lump-sum payout schedule receives no 
payouts until the end of the 10th year.  If she is alive at the end of the 10th year, she is paid 
the entire accumulated balance, which consists of the original contribution, the accumulated 
investment gains (or losses) over the 10 years, and the accumulated tontine gains over the 
10 years.  If she dies before the end of the 10th year, she receives nothing. 

The appeal of the lump-sum payout is that it maximizes the tontine gain that can be 
realized over the 10-year period.  Since it is an all-or-nothing bet on surviving 10 years, it 
pays more at the 10-year mark than any schedule that would provide earlier payouts.  We 
believe this would make it an appealing option for some members. 

We choose a 10-year term for simplicity in the simulation.  We envision the ITA provider 
allowing each member to select the term from a range of options, perhaps any term between 
5 and 30 years.  We also envision providers allowing members to hold multiple lump-sum 
payout contracts, each with its own terminal date and balance, allowing members to set up 
multiple lump-sum payouts that occur at different ages of life contingent upon surviving to 
those ages.  Such payouts would allow the ITA provider to offer the benefits of “survivor 
funds” as proposed by Forman and Sabin (2016) within the single ITA, rather than having 
to operate a plethora of standalone survivor funds as proposed there. 
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Life annuity.  A member who has the life-annuity payout schedule receives an annual 
payout in the amount of 𝑠 𝑎⁄ , where 𝑠 is his balance at the end of the year including his 
tontine gain for the year, and 𝑎 is his current “annuity factor.”  His annuity factor 𝑎 is the 
expected present value of $1 paid this year and every subsequent year for the duration of 
his lifetime, with future payments discounted to the present using an assumed annual 
interest rate of 4%.  Calculating the value of 𝑎 is a standard exercise.10  If it happens that 
the member’s investments earn exactly 4% in every subsequent year, and that the tontine’s 
group gain is exactly 1 in every subsequent year, then the member’s payout will have the 
same value 𝑠 𝑎⁄  in each subsequent year as it does this year.  Of course, future investment 
returns will not be exactly 4% each year, and future group gains will not be exactly 1.  Thus, 
future payouts will not be constant, but instead will fluctuate according to actual 
investment return and group gain. 

The appeal of the life-annuity payout option is that it mimics an immediate variable-
income annuity that could be purchased from an insurer – meaning, an annuity that makes 
lifetime payouts that vary according to the value of some underlying investment.  The 
advantage of the ITA over the insurer product is that the ITA offers an actuarially fair 
payout, as opposed to the insurer product which must offer a less-than-fair payout to cover 
its exposure to mortality risk.  Thus, an ITA member with a life-annuity payout option 
hopes to receive a higher payout over his lifetime than he would in an insurer annuity 
(assuming same amount invested in each, and the same portfolio).   Of course, the higher 
payout in the ITA is not guaranteed because it depends on the actual mortality experience 
of the tontine pool relative to that projected by the mortality table – that is, it depends on 
the group gain not being significantly below 1 on average (explained further in a later 
section). 

Operation 

The number of members is initially set to zero.  Beginning with year 2019, the logic for 
each year of a simulation run is as follows: 

At the start of each year: 

1. New members for the year are enrolled. 
2. Member portfolios are rebalanced (applicable only to those who selected the 

50/50 blend of stocks/bonds). 

                                       
10 The formula for the annuity factor at age 𝑥 is 𝑎 = 𝑎9̈ = 1 + ∑  𝑣1 1𝑝9

∞
1=1 , where 1𝑝9 is the probability of 

surviving to age 𝑥 + 𝑡 given that the member is alive at age 𝑥, and 𝑣 = 1 (1 + 𝑖)⁄  is the discount factor, with 
𝑖 the assumed interest rate (e.g., 4%).  The value of 1𝑝9 is calculated from the mortality table.  The IAM 
mortality table used here has a terminal age of 120, meaning there is zero probability of surviving to ages 
greater than 120, and so the sum in the formula has a finite number of terms. 
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At the end of each year: 

1. The balance 𝑠, for each member 𝑗 is calculated based on the investment market 
outcome for the member’s portfolio that year. 

2. The group gain 𝐺 is calculated using formula (1). 
3. Each surviving member’s account is credited with a tontine gain equal to 𝐺𝑟,𝑠,, 

where 𝑟, is the member’s nominal tontine yield for the year.  The member’s 
balance is updated to reflect the credited tontine gain. 

4. Each surviving member's payout is deducted from the member’s balance, 
according to the member’s payout contract. 

5. Each decedent’s balance is set to zero. 
6. Members with zero balance are deleted.  Zero balance is the case for decedents 

and for survivors whose payout equals a full withdrawal of the balance. 

We performed 10,000 simulation runs, each run spanning the 82 years from 2019 to 2100.  
In each simulation run, random investment returns for the stock and bond asset classes 
were generated for each of the 82 years.  Each year’s investment return of the two asset 
classes was generated using a jointly log-normal distribution with parameters as shown in 
Table 4.  A total of 82 × 10,000 = 820,000 random investment returns were generated for 
each asset class. 
Table 4: Investment Return Parameters (annual) 

 Arithmetic Mean Standard Deviation Correlation 

Stock 9.0% 18.0% 1.0  

Bond 5.5% 6.5% 0.3 1.0 

At the start of each year, 1,000 new members were enrolled with randomly selected 
parameters (age, gender, amount, portfolio, payout schedule) as described above.  These 
parameters are the same on every run, meaning they were randomly selected one time and 
then used on every run.  Thus, we simulate a single, randomly selected population of 
82 × 1,000 = 82,000 members.  Each member of the population was assigned a random year 
of death, which changes with every run; that is, a total of 82,000 × 10,000 = 820,000,000 
random years of death were simulated. 

Each member’s year of death was randomly generated using the member’s probability 
of death as defined by the IAM Basic mortality table.  This is the same table that the ITA 
uses to calculate the member’s nominal tontine yield.  Thus, the underlying distribution 
that governs member death times is an exact match to what is assumed by the tontine.  In 
other words, we are simulating only the effect of idiosyncratic risk, and are ignoring the 
effect of systematic risk for now.  We discuss systematic risk in a later section. 
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In each simulation run, forfeiture allocation was executed on the last day of each year 
using the nominal-gain method, and the corresponding group gain value was calculated.  
Thus, a total of 82 × 10,000 = 820,000 group gain values were calculated. 

Assessing Fairness 

For as long as they survive, fair tontine investors will hope to achieve the same return 
as if they had invested outside of a tontine, plus a nominal tontine yield.  The latter reflects 
the expected value of the actual tontine yield that results from fairly pooling mortality risk 
with other members of the tontine. 

We postulate that members will believe their tontine investment to be successful and 
perceive the tontine to be fair if they consistently receive tontine yields that are close to 
their nominal values.  We say “close to” because members should understand that their 
actual tontine gains will naturally vary from their nominal values to some degree because 
although mortality pooling effectively mitigates mortality risk, it does not eliminate it 
completely.  It is easy to see that if the group gain 𝐺 is close to 1, members will receive 
actual tontine yields of 𝑟𝐺 that are close to their nominal values of 𝑟.  Thus, an assessment 
of fairness boils down to the characteristics of the group gain. 

Simulation Results 

Preliminaries 

Pool size.  The number of members in the ITA pool changes over time.  Figure 2 plots 
the number of members at the start of each year, averaged over the 10,000 simulation runs. 
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Figure 2: Average Number of Members 

For the first ten years, 2019 through 2028, the plot roughly follows a straight line.  This 
is because 1,000 new members join at the start of each year, while the number who die is 
relatively low.  At the start of the tenth year, 2028, a total of 10,000 people have joined, 
and on the average about 1,160 of those have died during the preceding nine years, for an 
average of about 8,840 members at the start of 2028. 

Beginning in 2029, the plot shows a slower growth in the average number of members.  
This is due to the expiration of 10-year lump sum contracts.  Approximately half of the 
members who joined in 2019 have lump-sum contracts, and all of them will have exited the 
tontine by the end of 2028 – some by dying, but most because they outlived the 10-year 
term.  The same is true at the start of subsequent years – about half the members who 
joined ten years earlier have lump-sum contracts, and those who did not die will now be 
terming out.  In short, the growth rate after 2029 is slower than before because of lump-
sum term-outs. 

Eventually the growth rate slows, when the pool becomes large enough that a near-
equilibrium is reached where, on the average, the number of deaths plus the number of 
lump-sum term-outs matches the number of new entrants (1,000 per year).  However, the 
equilibrium is not static, because mortality rates decrease as time goes by.  As a result, the 
growth rate does not completely halt, because decreasing mortality pushes up the pool size 
needed to get the offsetting number of deaths. 
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We emphasize that this is only one example, an example that reflects the way we chose 
to do the simulation.  In practice the average number of members will be very different 
than this, because there will not be exactly 1,000 members joining each year, and their 
parameters (age, gender, initial amount, portfolio, payout contract) will not be so nicely 
assigned.  Our goal here is merely to create a dynamic membership that we can use to 
illustrate ITA behavior. 

Group gain.  Figure 3 plots the mean and standard deviation of the yearly group gain 
as it occurred over the simulation runs.  For each year, the simulation produced 10,000 
sample values of the group gain, one sample from each of the 10,000 runs.  The mean 𝜇 and 
the standard deviation 𝜎 of these 10,000 samples were calculated, and the three points 𝜇, 
𝜇 + 𝜎, and 𝜇 − 𝜎 are plotted.  For example, for the year 2019, the mean and standard 
deviation of the 10,000 samples were calculated as 𝜇 = 1.00998 and 𝜎 = 0.39094, so the 
plotted values for 2019 are 1.00998, 1.40092, and 0.61904. 
Figure 3: Group Gain 

Importantly, the plot shows that the mean value of the group gain is very close to 1 in 
every year.  This validates that the tontine design is fair, or at least approximately so, 
because on the average each survivor receives an actual tontine gain 𝐺𝑟𝑠 that is close to 
his nominal tontine gain 𝑟𝑠. 

The actual group gain varies randomly about 1 over the simulation runs, and the extent 
of that variation is quantified by the standard deviation.  The standard deviation is greatest 
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in early years, when the number of members is small, and it decreases as the number of 
members grows.  This can be understood by referring to the group-gain formula (1).  The 
numerator and denominator in the formula are each random sums.  The expected value of 
each sum is identical.11  Intuitively, by the law of large numbers, each sum becomes more 
tightly distributed about its expected value as the number of members grows, and thus the 
ratio of the two becomes more tightly distributed about 1.  This intuition is validated by 
the plot.12 

Figure 4 illustrates that the group gain is uncorrelated with portfolio returns.  The figure 
is a scatter plot of 820,000 points, one point for each of the 82 years in each of the 10,000 
simulation runs.  The 𝑦-coordinate of a point is the value of the group gain for a particular 
year in a particular run.  The 𝑥-coordinate is the difference between the returns of the stock 
and bond portfolios for that year and that run.  A positive 𝑥-coordinate means stocks 
outperformed bonds, and a negative coordinate means bonds outperformed stocks.  For 
example, suppose that in year 2030 of the fifth simulation run, the group gain value was 
1.1, the stock portfolio returned 10%, and the bond portfolio returned 1%; then stocks 
outperformed bonds by 10 − 1 = 9%, and the plotted point for that year and run would be 
(9, 1.1).  And if in the year 2050 of the tenth simulation run, the group gain was 0.8, the 
stock portfolio returned 2%, and the bond portfolio returned 5%, then stocks 
underperformed bonds by 5 − 2 = 3%, and the plotted point for that year and run would 
be (–3, 0.8). 

                                       
11 The expected value of the numerator is ∑ 𝑞,𝑠,

 
, , and the expected value of the denominator is 

∑ (1 − 𝑞,)𝑟,𝑠,
 
, = ∑ 𝑞,𝑠,

 
, . 

12 For an analytical discussion, see Sabin and Forman (2016). 
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Figure 4: Scatter Plot of Group Gain and Stock Return Premium 

Visually, the scatter plot shows no obvious correlation between the 𝑥 and 𝑦 coordinates.  
That is, the group gain values (the 𝑦 values) appear evenly distributed about 1 regardless 
of the relative return of stocks versus bonds (the 𝑥 values).  To quantify the correlation, 
the figure includes a trend line, meaning a straight line fitted to the plotted points using 
linear regression.  The formula for the trend line is: 

𝑦 = 1.0009074 − 0.0000013𝑥. 

This is an excellent match to the horizontal line 𝑦 = 1, validating the uncorrelation. 

The uncorrelation can be understood by again referring to the group-gain formula (1).  
The expected value of the numerator matches the expected value of the denominator.  This 
is true regardless of the values of the 𝑠,  terms, meaning regardless of the balances of 
members.  Those balances are, of course, affected by portfolio returns, but the expected 
value of numerator and denominator remain identical regardless.  Intuitively, then, the 
effect of portfolio return is self-cancelling as far as the average group gain is concerned.  The 
plot validates this intuition.13 

These are perhaps the most significant properties of the tontine, that the average value 
of the group gain is 1, and that the group gain is uncorrelated with market return.  They 

                                       
13 For an analytical discussion, see Sabin and Forman (2016). 
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are what allow investors to select their own portfolios and payout schedules, in whatever 
amounts they wish, without affecting the expected value of each other’s tontine gain.  The 
properties are exactly true under the idealization that the tontine is exactly fair; they are 
approximately true here in our tontine design that uses the nominal-gain method.  In this 
simulation, the approximation is indistinguishable from exact. 

Yearly Tontine Yield 

It is worth noting that all members of a given cohort – meaning all members of a given 
birth year and gender – experience the same yearly tontine yield.  A member’s yearly tontine 
yield has value 𝑟𝐺, where 𝑟 is the member’s nominal yield during for the year, and 𝐺 is the 
tontine’s group gain for the year.  All members of his cohort share the same value of nominal 
yield 𝑟 since they have the same probability of dying during the year, and all members of 
the tontine regardless of cohort share the same value of group gain 𝐺.  Thus, the yearly 
tontine yield 𝑟𝐺 is the same for all members of his cohort.  This is true even if cohort 
members invest in different portfolios, or have different payout contracts, or join the tontine 
at different times, and it is true even if actual mortality varies widely from what is projected 
(𝐺 much different than 1).  Thus, when discussing yearly tontine yield, we do so in terms 
of cohorts rather than in terms of individual members. 

Figure 5 illustrates the yearly tontine yield for the male cohort who turns 65 in the year 
2019, meaning the male cohort born in 1954. 
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Figure 5: Yearly Tontine Yield, by Age 

The nominal value of the cohort’s yearly tontine yield during age 𝑥 is 𝑟9 = 𝑞9 (1 − 𝑞9)⁄ , 
where 𝑞9 is the probability of dying during the year of age 𝑥.  This is the curve labelled 
“nominal” in the figure.  The nominal yield increases with age, since the probability of dying 
increases.  It is less than 1% at age 65, is about 5% at age 85, and is upwards of 20% after 
age 95. 

The actual value of the cohort’s yearly tontine yield is 𝑟9𝐺9, where 𝐺9 is the tontine’s 
group gain during the cohort’s year of age 𝑥.  The figure shows two percentile curves that 
represent the actual yield as it occurred in the simulation.  The curve labelled “10th 
percentile” means that, at each age, the cohort’s actual yield was less than the plotted point 
in 1,000 simulation runs and greater than the plotted point in 9,000 runs.  Similarly, the 
curve labelled “90th percentile” means that, at each age, the cohort’s actual yield was less 
than the plotted point in 9,000 simulation runs and greater than the plotted point in 1,000 
runs.  Note that the percentiles are determined for each age separately – meaning, for 
example, the 1,000 runs that lie below the 10th percentile curve at age 70 are different than 
the 1,000 runs that lie below the curve at age 80.  The percentile curves straddle the nominal 
curve in approximate symmetry with deviation from nominal increasing with age.  But the 
scale of the figure makes it hard to discern much about the deviation. 
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Figure 6: Yearly Tontine Yield, Relative to Nominal, by Age 

For a closer look at the deviation, Figure 6 shows the actual yield relative to the nominal 
yield.  That is, it plots the percentiles of the values 𝑟9(𝐺9 − 1) that occurred during the 
cohort’s age 𝑥 over the simulation runs.14  At age 65, the 10th and 90th percentiles are roughly 
±0.4%.  That is, 80% of the simulation runs resulted in an actual yearly yield within 0.4% 
of nominal, with 10% of the runs having an actual yield worse than 0.4% below nominal, 
and 10% of the runs having an actual yield better than 0.4% above nominal.  The deviation 
of the percentile curves initially decreases, until about age 72.  This is because these are the 
first years of operation of the tontine (it began in 2019, when this cohort was age 65), and 
the number of participants grows rapidly each year, such that the variance in the group 
gain decreases (see Figure 3).  Thereafter, the deviation of the percentile curves increases 
with age, because the variance of the group gain stabilizes, while the value of 𝑟9 increases 
with age.  The increasing value of 𝑟9 amplifies the effect of group-gain variance on the 
actual yield 𝑟9𝐺9, resulting in increasing deviation of the percentile curves.  At age 87 the 
percentile curves deviate by roughly ±1% from nominal, and the deviation increases rapidly 
from there to about ±5% at age 100.15 

                                       
14 An equivalent description is that Figure 6 subtracts the nominal curve from each curve in Figure 5. 
15 We remark that the plots in Figure 5, Figure 6, Figure 7, and Figure 8 are strictly correct only if, in every 

simulation run, there is at least one member of the cohort who survived to age 100.  This was not always 
the case – in some simulation runs, all members of the cohort died earlier than age 100.  However, the plots 
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Annualized Tontine Yield 

We can express a member’s cumulative tontine gain in terms of an annualized tontine 
yield by computing the geometric mean of the member’s yearly tontine yields.  Expressed 
over the period from age 𝑚 to age 𝑛, the annualized tontine yield is: 

𝑌H:J = ( ∏ (1 + 𝑟9𝐺9)
J

9=H
)

1
(J−H+1)

− 1. 

The annualized tontine yield is the average value of the member’s yearly tontine yields, in 
the sense that if the yearly tontine yield from age 𝑚 to age 𝑛 had been the fixed value 𝑌H:J 
every year, this would have resulted in the same balance and payout at age 𝑛 as the 
member’s actual balance and payout.  For a detailed discussion, see Appendix A. 

The nominal value of the annualized tontine yield is: 

                             𝑟H:J = ( ∏ (1 + 𝑟9)
J

9=H
)

1
(J−H+1)

− 1 .                           (2) 

If the group gain 𝐺9 equals 1 during each year of the member’s age 𝑚 to age 𝑛, then the 
actual value of the annualized tontine yield 𝑌H:J matches the nominal value 𝑟H:J .  In 
general, of course, the group gain does not equal 1, so the actual value of the annualized 
yield differs from its nominal value.  Since the group gain is non-negative, the actual value 
of the annualized yield is never less than 0. 

Since the yearly tontine yields are identical for all members of a given cohort, the 
annualized tontine yields 𝑟H:J are the same for all members who belong to the same cohort 
and who are alive and participating in the tontine from age 𝑚 to age 𝑛.  This is true even 
if they invest in different portfolios, or have different payout contracts, or join the tontine 
at different times, and it is true even if actual mortality varies widely from what is projected.  
Thus, when discussing annualized tontine yield, we do so in terms of cohorts and age ranges. 

Figure 7 illustrates the annualized tontine yield for the male cohort who turns 65 in the 
year 2019 (i.e., birth year 1954) for those who joined the tontine in 2019. 

                                       
are still correct if interpreted as representing what a cohort member would receive if he survived to age 100, 
assuming that his survival has negligible effect on the group gain. 
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Figure 7: Annualized Tontine Yield, by Age 

The nominal curve in Figure 7 plots the nominal value 𝑟65:J of the annualized tontine yield 
for these members.  The nominal annualized yield increases with age because the nominal 
yearly yield 𝑟9 increases with age, as seen in Figure 5, and thus the geometric mean in 
formula (2) increases with age.  However, the averaging effect of the geometric mean causes 
the annualized yield in Figure 7 to grow more slowly than the yearly yield in Figure 5. 

The actual value 𝑌65:J of the annualized tontine yield for these members as it occurred 
in the simulation is represented in the figure by two percentile curves, the 10th and 90th 
percentiles, similar to those in Figure 5.  The two percentile curves straddle the nominal 
curve in approximate symmetry, with deviation from nominal initially decreasing with age 
and then increasing with age.  But the scale of the figure makes it hard to discern much 
about the deviation. 
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Figure 8: Annualized Tontine Yield, Relative to Nominal, by Age 

For a closer look at the deviation, Figure 8 shows the actual annualized yield relative to 
the nominal annualized yield.  That is, it plots percentiles of the values 𝑌65:J − 𝑟65:J that 
occurred in the simulation during age 𝑛 for these members.16 At age 65, the 10th and 90th 
percentiles are roughly ±0.4% – the same as in Figure 6, since only a single year is involved.  
Also as in Figure 6, the deviation of the percentile curves decreases during early years, 
because the number of participants grows and the variance in the group gain decreases.  
The deviation starts growing in later years, beyond roughly age 82, but at a much slower 
rate than the deviation growth in Figure 6.  For example, at age 95, the percentile curves 
are only about ±0.2% in Figure 8, compared to ±2.5% in Figure 6.  The deviation in Figure 
8 is lower at advanced ages because the annualized yield is an average of the yearly yields, 
and the averaging process tends to smooth out the up-and-down deviations in the yearly 
yields. 

Persistence 

The desired characteristics of the relative tontine yield need to be persistent since ITAs 
are meant as open-ended offerings operated in perpetuity.  To illustrate that this is indeed 
the case in our simulation, Figure 9 shows the relative tontine yield for selected age/gender 

                                       
16 An equivalent description is that Figure 8 subtracts the nominal curve from each curve in Figure 7. 
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pairings by calendar year since the ITA is first incepted.  That is, it plots the percentiles of 
the values 

𝑟[PQR,QRJTRU,VRPU](𝐺VRPU − 1) 

versus year, where 𝑟[PQR,QRJTRU,VRPU] is the nominal yield of a member of the specified age and 
gender for that year, and 𝐺VRPU is the group gain for that year.17 

Figure 9: Yearly Tontine Yield, Relative to Nominal, by Calendar Year 

Note that the data points in Figure 9 for the age-65 male in 2019 match the data points in 
Figure 6 for age 65.  Similarly, the data points in Figure 9 for the age-85 male in 2039 
match the data points in Figure 6 for age 85. 

In the early years of the ITA, the 10th/90th percentiles deviate from nominal by a 
relatively large amount due to the relatively low enrollment (see Figure 2).  This deviation 
decreases as enrollment increases and has mostly settled down by about 2030, when the 
ITA’s enrollment has reached about 10,000 members.  Thereafter there is a slow decrease 
in the percentile deviation over time due to decreasing mortality, which causes a slow 
decrease in nominal yield over time.18  The deviation remains well behaved in that it is 

                                       
17 For comparison, Figure 6 plots 𝑟[PQR,HPWR,2019+PQR−65](𝐺2019+PQR−65 − 1) versus age. 

18 Recall that we apply an improvement scale to the nominal mortality rates each year. 
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symmetric around a mean value of 0, meaning that on the average members continue to 
receive actual tontine yields that are close to their nominal yields. 

Simulation Insights 

Our simulation illustrates how the fair-tontine principle can be applied to the concept 
of mortality-pooled brokerage accounts that are perpetually open to new members.  In the 
same way as IRA brokerage accounts, individuals can invest and trade as they choose.  They 
may also choose from a wide array of payout methods.  ITAs are fair to all members 
regardless of the demographics, balances, investment choices, and payout choices of the 
other members.  Furthermore, this fairness is persistent – ITAs remain fair in perpetuity, 
regardless of when a member elects to join. 

The degree of variation in ITA outcomes depends on the size of the membership pool.  
To provide additional context, recall that each member’s realized tontine yield is a function 
of his predetermined nominal tontine yield 𝑟 scaled by a common group gain 𝐺.  Since the 
nominal tontine yield for each member is given, the effect of pool size boils down to its 
effect on the group gain.  The effect is complex since it depends on the composition of ages, 
genders, and balances of the members, but in general we can say that the variance of the 
group gain decreases with pool size.  The underlying principle here is the effect of the law 
of large numbers in diversifying away mortality risk. 

With regards to the diversifying effect of pool size, we can make the following statement.  
Suppose we start with a given tontine pool and then enlarge that pool by a factor of 𝑘 by 
replicating each member 𝑘 − 1 times (meaning 𝑘 members of each age, gender, balance, 
portfolio, and payout schedule specified in the original pool).  The variance of the group 
gain in the enlarged pool will be reduced by the factor 1/𝑘, and the standard deviation by 
1

√
𝑘⁄ .  For a derivation of this result, see Sabin and Forman (2016). 

So, if we were to double the number of new members added each year in our simulation, 
we would expect the standard deviation to be reduced by a factor of 1

√
2⁄ .  And if we were 

to increase the number of members one-hundredfold, we would expect the standard 
deviation to be reduced by a factor of 1 10⁄ .  These factors are only approximate – their 
actual values depend on the ages, genders, and balances of the members.  In our simulation, 
where each member's parameters are randomly chosen from fixed distributions, we would 
expect the actual factors to be close to the values here.  But in practice, the parameters of 
new members will not be so nicely distributed, and we cannot expect the standard deviation 
to follow the 1

√
𝑘⁄  formula too precisely.  Nevertheless, the trend applies – the larger the 

pool size, the smaller the standard deviation.  Thus, if ITAs were to become widely adopted, 
we would expect to see a lower group gain variance than illustrated in our simulation. 
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Effect of the Investment Decisions of Others 

We opened by stating that an individual member’s results are largely unaffected by the 
investment choices of the other members.  Despite the preceding analysis that demonstrates 
this, it may still not be intuitive to the reader why a successful aggressive investor is not 
disadvantaged by being in a pool with conservative investors who are likely to die with 
lower balances than would be the case if they had invested more aggressively.  Wouldn’t 
members want other members to die with larger balances? 

While it is true that investment decisions made by members may result in either smaller 
or larger balances and therefore smaller or larger forfeiture amounts, what matters is the 
reallocation of those forfeiture amounts.  The key is to ensure that reallocations remain 
actuarially fair to each member based on his own mortality rate 𝑞 and account balance 𝑠.  
By ensuring that the reallocation is fair, each member will have an expected nominal tontine 
gain of 𝑟𝑠 = 𝑠𝑞 (1 − 𝑞)⁄  regardless of how anyone else invests – even the aforementioned 
aggressive investor who is in a pool dominated by conservative investors.  Three concepts 
are fundamental to understanding this.  First, by successfully investing aggressively his 
balance 𝑠 will be higher than if he had invested conservatively.  Second, his share of 
forfeiture reallocations will also be higher because a higher value of 𝑠 results in a higher 
value of 𝑟𝑠.  Third, while the investment choices of the members will of course have an 
impact on their balances and therefore will also have an impact on the group gain, it will 
do so for both the numerator and the denominator of the group gain formula (1).  Most 
importantly, the expected value of the group gain will remain very close to 1, and thus the 
expected tontine gain 𝑟𝑠𝐺 received by each member will remain very close to its fair value 
of 𝑟𝑠. 

To illustrate this, we reran our simulation using the same assumptions as before except 
for the selection of investment portfolios.  This time, each member randomly chose either a 
100% stock portfolio or a 100% bond portfolio, with a 5% probability of selecting the stock 
portfolio and a 95% probability of selecting the bond portfolio.  Recall that each member’s 
realized tontine yield is simply his nominal tontine yield scaled by the group gain, and so 
fairness boils down to the characteristics of the group gain.  For this reason, we focus on 
the new simulation’s group gain as evidence that the tontine pool remains fair. 

Group gain.  Figure 10 plots the mean and standard deviation of the yearly group gain 
over the new simulation runs.  It looks very similar to the original simulation result shown 
in Figure 3. 
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Figure 10: Group Gain When Portfolio Selection is Skewed Conservatively 

Figure 11 illustrates that the group gain remains uncorrelated with portfolio returns.  It 
likewise looks similar to the original simulation results shown in Figure 4. 
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Figure 11: Scatter Plot of Group Gain and Stock Return Premium 

This time the formula for the trend line is: 
𝑦 = 1.0008250 + 0.0000093𝑥. 

Importantly, these plots again reveal that the mean value of the group gain remains 
very close to 1 in every year.  This validates that the tontine design remains fair, or at least 
approximately so, because on the average each survivor receives an actual tontine gain 𝐺𝑟𝑠 
that is close to his nominal gain 𝑟𝑠. 

Benefits of Individual Tontine Accounts 

ITAs represent a unique value proposition in that they give their members an extensive 
amount of choice similar to IRAs, with the added benefit of earning a tontine yield on top 
of any underlying investment returns.  Tontine yields represent the best kind of portfolio 
returns in that they are 1) uncorrelated to the returns of the investments, and 2) always 
nonnegative.  Furthermore, because ITAs pool mortality risks, they offer a way to generate 
lifetime payouts in a way not possible with traditional IRA investment accounts, which 
offer no such pooling. 

Of course, insurance companies offer mortality-pooled lifetime income in the form of 
payout annuities.  The comparable annuity product is a variable-income annuity (VIA).  
VIAs typically make payouts similar to the life annuity payout used in our simulation, 
discussed previously.  The annuitant selects an underlying benchmark portfolio from some 
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allowable set of options.  He receives an initial payout based on his annuity factor and the 
initial value of his investment.  The annuity factor represents the expected present value of 
$1 paid annually (or on some other selected frequency) for the duration of his lifetime, with 
future payments discounted to the present using an assumed interest rate that reflects the 
anticipated return of his benchmark portfolio.  If the actual return on the portfolio exactly 
matches the assumed interest rate every year, then the payout will have the same value 
every year.  Otherwise the payout will fluctuate up or down based on the actual return of 
the portfolio relative to the assumed interest rate. 

Both ITAs and VIAs offer payouts that vary with investment performance in a similar 
manner.  Both can effectively diversify away the idiosyncratic component of mortality risk.  
The primary difference between the products lies in who bears the undiversifiable, 
systematic component of mortality risk, which represents the risk that the overall 
population of annuitants/members may die at an aggregate rate that is different than 
anticipated.  In other words, it represents the risk that the underlying mortality table and 
improvement scale used by the product designer turns out to be wrong.  With insurance 
annuities such as VIAs, the insurer bears this systematic risk.  In ITAs, the members bear 
it. 

Because insurers bear this risk and back it with a guarantee, they are required to ensure 
their solvency by pricing in a suitable risk premium.  Such risk premiums do not apply to 
ITAs since they offer no such risk transfer or guarantee.  Theoretically, then, the payout of 
ITAs should be higher than that of VIAs invested in the same portfolio of assets. 

We examine this by comparing the “mortality yields” of ITAs versus VIAs.  Mortality 
yields represent the amount credited as a result of mortality pooling.  For ITAs, which 
operate quite transparently, this is quantified by the tontine yield.  VIAs, which operate 
much more opaquely, also provide a similar type of mortality yield that arises from the fact 
that annuitants who die relatively early essentially subsidize those who outlive them. 

To measure this mortality yield, we model VIAs using a different mortality table – this 
time, the 2012 IAR Period mortality table, again using projection scale G2 (NAIC, 2013).  
The IAR table is a suitable choice because it is derived by applying a reserve margin to the 
IAM table to provide a cushion against the systematic mortality risk that an insurer bears 
in selling individual annuities.  The IAM table represents expected mortality rates for the 
segment of the population who buy annuities (or tontines), while the IAR table is more 
conservative due to its reserve margin.  IAR mortality rates are lower than IAM mortality 
rates – approximately 90% lower from birth through age 100, then gradually increasing to 
100% of the IAM mortality rate at higher ages. 

We compute “no load” VIA mortality yields 𝑟 ̂using the formula 𝑟̂ = 𝑞 ̂ (1 − 𝑞)̂⁄ , where 𝑞 ̂
represents the corresponding cohort mortality rate from the projected IAR table.  By no 



  34 

load, we mean a VIA with no mortality and expense fee, no administrative fees, etc.  In 
other words, the VIA mortality yield 𝑟 ̂is similar to our nominal tontine yield 𝑟 except that 
it is computed from the IAR table rather than the IAM table.19  Net mortality yields on 
VIAs that include an additional fee loading can also be computed using the formula 𝑟ĴR1 =
𝑟̂ − 𝑒(1 + 𝑟)̂, where 𝑒 represents the fee loading as an expense ratio against assets (see 
Appendix B for details). 

Yearly Yield 

As shown previously, an ITA’s tontine yield each year will depend on actual mortality 
experience, which is quantified on a relative-to-nominal basis by the scaling factor we call 
the group gain.  Conversely, since the VIA transfers all mortality risk to the insurer, its 
mortality yield (though opaque and undisclosed to the annuitant) each year is guaranteed.  
Figure 12 compares the yearly tontine yield of an ITA to the yearly mortality yield of a 
VIA for the male cohort who turns 65 in the year 2019. 
Figure 12: Yearly Tontine/Mortality Yield, by Age 

The plot shows the nominal tontine yield along with the 10th and 90th percentiles of the 
simulated actual tontine yield, from Figure 5.  The curves labeled with the prefix “Insurer” 

                                       
19 Stated another way, the value 𝑟 ̂would be equivalent to the nominal tontine yield 𝑟 of an ITA if the ITA 

had been designed using the IAR table instead of the IAM table. 
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illustrate the mortality yield he would get from an insurer offering a VIA.  These are 
explained next. 

Insurer, 0% load.  This is the yearly mortality yield an insurer would pay if 1) the 
insurer calculates the annuity payment using the IAR table, and 2) the insurer charges no 
load (meaning no mortality/expense fee, no administrative fee, etc.).  In other words, it is 
the mortality yield of a fair annuity where fairness is based on the IAR table.  Theoretically, 
this represents a best-case example of what an individual might hope to buy. 

Quite coincidentally, the yield curve for this zero-load annuity is a very close match to 
the 10th percentile actual yield in our tontine simulation.  That is, in 90% of the simulation 
runs, the member did better by participating in the tontine than he would have by 
purchasing a VIA even if the insurer offered a 0% load.  The exactness of the match is a 
mere coincidence of our simulation -- had we simulated a larger (or smaller) population, we 
would have found more (or less) than 90% of the runs to favor the tontine. 

Insurer, 1% load.  This is the yearly yield an insurer would pay if it added a 1% expense 
load to the VIA.  Not surprisingly, the yield is less than the zero-load case by about 1%.  
The difference is a function of both the expense load and the mortality yield 𝑟,̂ meaning 
that it increases with age.  See Appendix B for discussion. 

For a closer look, Figure 13 illustrates these yields relative to the nominal tontine yield. 
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Figure 13: Yearly Tontine/Mortality Yield, Relative to Nominal, by Age 

Relative to the nominal tontine yield, the insurer annuity offers a significantly lower yield 
at advanced ages, even with zero load.  This is because the IAR table used by the insurer 
has lower mortality rates than the IAM table used by the ITA.  The gap between the insurer 
yield and the nominal tontine yield represents the insurer’s reserve and profit margin.  Note 
that for ages greater than about 90, the zero-load annuity provides a margin greater than 
1%; thus, for such advanced ages, the conservative rates of the IAR table contribute more 
to the insurer’s margin than does a 1% load.  Of course, the insurer bears the risk that 
actual mortality will be less favorable than the IAM table predicts, and the reserve and 
profit margin is a buffer to absorb losses that might arise from unfavorable systematic 
mortality outcomes. 

Annualized Yield 

Figure 14 represents the annualized yield for the male cohort who turns 65 in the year 
2019. 
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Figure 14: Annualized Yield, by Age 

Recall that the annualized yield is an average of the yearly yields, and therefore the 
annualized yield tends to deviate less from nominal than do the individual yearly yields.  
The plot illustrates that the tontine is very likely to deliver a higher yield, and therefore a 
higher payout.  The likelihood of this performance advantage increases with age. 

For a closer look, Figure 15 illustrates the annualized yield relative to nominal for this 
cohort. 
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Figure 15: Annualized Yield, Relative to Nominal, by Age 

This plot reveals that a long-lived person is virtually certain to do better in the tontine 
simulation than in either insurer annuity.  This effect is important because no one buys a 
lifetime payout stream with the expectation of dying soon.  Life annuities are protection 
against living a long time.  For those who want longevity protection, the simulation suggests 
that tontines are a more efficient vehicle. 

ITAs effectively diversify idiosyncratic mortality risk and eliminate the cost of protecting 
against systematic mortality risk in the aggregate.  To be sure, ITA members bear the 
systematic mortality risk themselves collectively, whereas annuity purchasers do not.  
Annuitants sacrifice a significant yield as the price for transferring the systematic 
component of mortality risk to an insurer rather than bearing it themselves. 

We do not mean to overstate the likelihood that an ITA will outperform a similarly-
structured VIA.  Our tontine simulations measure only the idiosyncratic component of 
mortality risk.  A more complete analysis of the probability distribution of the performance 
differences between ITAs and VIAs would include a model of systematic mortality risk as 
well.  That is a subject for future research. 

The Effect of Systematic Mortality Risk 

The subject of systematic mortality risk is an important one.  Although modeling it is 
a challenge that we choose not to tackle here, it is worthwhile nevertheless to show how 
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ITAs behave in the presence of systematic mortality risk.  An analytical discussion of the 
topic is presented in Sabin and Forman (2016).  Here, we illustrate it by rerunning our 
simulation using the same assumptions we made originally except for the rate at which 
individuals actually die.  As before, the ITA is designed using the IAM table with projection 
scale G2, meaning that the nominal tontine yields are computed exactly as before, derived 
from IAM table rates.  This time, however, the year of death for each simulated member is 
drawn from the IAR table with projection scale G2.  Since mortality rates are lower for the 
IAR table due to its reserve margin, the effect is that ITA members die at a slower rate 
than expected. 

Group gain.  Since the IAR mortality rates used to model actual death rates are only 
about 0.9 times the IAM mortality rates used to design the ITA, we would guess the mean 
value of the group gain to now be about 0.9, compared to 1.0 in the original case.  Figure 
16 reveals that this is indeed the case. 
Figure 16: Group Gain When Mortality Evolves According to IAR Table Rates 

This result can be explained by examining the group gain formula (1).  If members die at 
a rate that is 0.9 times the rate that was anticipated, the expected value of the numerator 
will decrease by a factor of about 0.9, while the expected value of the denominator will not 
change much.  The standard deviation of the group gain is largely unchanged, having 
decreased only slightly.  See Sabin and Forman (2016) for a more thorough discussion of 
these statistics. 
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Tontine yield.  Because the membership in aggregate lives longer than expected, the 
actual tontine yield that an individual member experiences in any given year (based on 
IAR) is likely to be less than the nominal yield that the member hopes for (based on IAM).  
The member’s actual tontine yield in year of age 𝑥 is 𝑟9𝐺9 , where 𝑟9 is the member’s 
nominal yield and 𝐺9 is the tontine’s group gain for that year.  Since the average group 
gain is about 0.9, the average actual yield is about 0.9 times nominal.  Since the nominal 
gain increases with age, the yield relative to nominal, 𝑟9(𝐺9 − 1), becomes (on average) 
more negative with age. 

Figure 17 and Figure 18 illustrate this for members in the age-65 male cohort who join 
in 2019. 
Figure 17: Yearly Tontine Yield, Relative to Nominal, by Age 
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Figure 18: Annualized Tontine Yield, Relative to Nominal, by Age 

Figure 18 shows that a long-lived member in this cohort is virtually certain to do worse 
than nominal in this simulation.  This is not surprising, since on the average his actual 
yearly yield is only 0.9 times nominal, so over a long lifetime the actual annualized yield 
will tend close to 0.9 times nominal. 

It is noteworthy that members of this cohort experienced an average yearly yield similar 
to that of a zero-load VIA, which is a fair annuity based on the IAR mortality rates.  This 
can be seen by comparing the 50th percentile curve in Figure 17 to the zero-load curve in 
Figure 13, and by similarly comparing Figure 18 to Figure 15.  This is what we would hope 
– even though there is a mismatch between the mortality rates assumed in the tontine 
design and the true mortality rates that the tontine experienced, the ITA behaved for this 
cohort as if it were designed using the true mortality rates. 

Unfortunately, this will not happen in general.  Instead, the ITA will behave more 
favorably for some cohorts than it would have if designed with the true mortality rates, and 
less favorably for other cohorts, according to how the true mortality rates for each cohort 
differ from the design mortality rates.  For a discussion of this effect, see Sabin and Forman 
(2016).  Nevertheless, we believe that all members will perceive the tontine as fair.  “True” 
mortality rates are theoretical parameters unseen by members, not known by even the 
provider until after-the-fact (if then).  What members do see is that they receive lower 
tontine yields than they had hoped for compared to the nominal yields that the provider 



  42 

had projected.  Though they are undoubtedly disappointed, we believe they will perceive 
the tontine as fair because everyone’s yields are reduced by the same percentage and the 
calculations that determine yields are fully transparent. 

Conclusion 

This paper illustrates in a practical way what has previously been theorized: that fair 
tontines are not bounded by any restriction that members must invest in a common portfolio 
or enroll in the same payout option. 

Individual tontine accounts represent an attractive alternative solution to the retirement 
income problem.  They operate very much like IRA brokerage accounts, but with the added 
benefit of providing a nonnegative and uncorrelated tontine yield on top of a member’s 
underlying investment returns.  Individuals can invest and trade when and as they choose.  
They may also choose from a wide array of payout contracts based on their particular 
preferences and needs.  ITAs are fair to all members regardless of when they open their 
accounts and regardless of the demographics, balances, investment choices, and payout 
choices of the other members. 

Another benefit of ITAs lies in their cost efficiency and transparency.  Fees are plainly 
disclosed and all-in costs to account holders should be very low when low-cost investments 
are selected.  The accounting is simple to report, and member statements are easy to 
understand. 

Economists and public policy makers have long pondered the so-called annuity puzzle; 
namely, why do so few people annuitize when it seems to be in their interest to do so?  To 
the extent that the answer involves the perceived high costs and lack of transparency of 
annuity products, ITAs represent an attractive remedy to these problems.  Because ITAs 
pool and diversify idiosyncratic mortality risk, they can offer payout options similar to 
insured annuity products, but at lower cost since the tontine structure obviates the added 
costs of guarantees.  Although (and because) ITA members collectively bear systematic 
mortality risk whereas annuity buyers do not, ITAs are likely (but not guaranteed) to 
deliver higher yields. 

ITAs give retirees a low-cost way to derive extra income from their savings without 
taking on additional investment risk.  Of course, since account holders cannot withdraw 
freely from their accounts whenever they wish but rather only per a payout schedule selected 
at the time of contribution, ITAs are not a complete replacement to traditional IRAs.  But 
they could be a very useful complement, and one with unique benefits not otherwise 
available from traditional investment and annuity products. 
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Appendix A:  Annualized Tontine Yield 

Consider a member who joins the tontine with an initial contribution of 𝑠0 dollars.  If 
she survives to the end of the first year, her balance at the end of the year, prior to her 
payout, is: 

𝑆1 = 𝑠0(1 + 𝑋1)(1 + 𝑟1𝐺1), 

where 𝑋1  is the net investment return earned by her portfolio during the year, 𝑟1 is her 
nominal tontine yield, and 𝐺1  is the tontine’s group gain for the year.  Her payout is 
𝐷1 = 𝑑1𝑆1, where 𝑑1 is her payout rate, which is some value between 0 and 1 that depends 
on her payout contract.  For example, if she has contracted for an annuity payout, then 𝑑1 =
1 𝑎1⁄ , where 𝑎1 is her annuity factor for the first year.  Or if she has contracted for a lump-
payout, then 𝑑1 = 0 if the contract term is greater than one year, or 𝑑1 = 1 if the contract 
term is one year.  Her balance after the payout is 𝑆1 − 𝐷1 = 𝑆1(1 − 𝑑1).  This is her balance 
at the start of the second year. 

If she survives to the end of the second year, her balance at the end of the year, prior 
to her payout, is: 

𝑆2 = 𝑆1(1 − 𝑑1)(1 + 𝑋2)(1 + 𝑟2𝐺2) 
= 𝑠0(1 − 𝑑1)(1 + 𝑋1)(1 + 𝑋2)(1 + 𝑟1𝐺1)(1 + 𝑟2𝐺2). 

Her payout is 𝐷2 = 𝑑2𝑆2, and the balance after her payout is 𝑆2(1 − 𝑑2). 

More generally, if she survives to the end of year n, her balance at the end of the year, 
prior to her payout, is 
                           𝑆J = 𝑆J−1(1 − 𝑑J−1)(1 + 𝑋J)(1 + 𝑟J𝐺J)                               (3) 

= 𝑠0 ∏(1 − 𝑑1)
J−1

1=1
∏(1 − 𝑋1)

J

1=1
∏(1 + 𝑟1𝐺1)

J

1=1
.                         (4) 

Her payout is 𝐷J = 𝑑J𝑆J and the balance after her payout is 𝑆J(1 − 𝑑J).  For completeness 
we define 𝑆0 = 𝑠0 and 𝑑0 = 0 so that formula (3) holds for the first year 𝑛 = 1 as well as for 
subsequent years. 

Formula (3) is the yearly version, showing how the current balance 𝑆J evolves from the 
previous year’s balance 𝑆J−1.  Formula (4) is the cumulative version, showing how the 
current balance 𝑆J evolves from the starting contribution 𝑠0.  We consider each of these 
separately. 

The payout rate 𝑑J  is related to the balance 𝑆J  by the formula 𝐷J = 𝑑J𝑆J .  The 
quantity 𝑑J is a parameter of the contract that specifies what percentage of the member’s 
balance gets paid out in year 𝑛.  It is a parameter that does not depend on the balance.  
Thus, it does not matter much whether we study the payout or the balance, because the 
results for one will apply immediately to the other.  We choose to study the payout. 
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Regarding the 𝑑J parameters, we have considered two possible contracts, lump sum and 
annuity.  However, the analysis here applies more generally to any contract which can be 
specified in terms of 𝑑J parameters.  For example, it would apply to an 𝑁-year contract that 
each year pays in inverse proportion to the remaining number of years, by specifying 𝑑1 =
1 𝑁⁄ , 𝑑2 = 1 (𝑁 − 1)⁄ ,… , 𝑑c−1 = 1 2⁄ , 𝑑c = 1.   These are just examples; many other 
contracts are possible under the 𝑑J-parameter framework. 

Yearly tontine gain. Referring to (3), we can write the yearly formula for the 𝑛1ℎ 
payout 𝐷J = 𝑑J𝑆J in a way that separates the effect of investment return from tontine yield, 
as follows: 

𝐷J
′ = 𝑑J(1 − 𝑑J−1)𝑆J−1(1 + 𝑋J) 

𝐷J = 𝐷J
′ (1 + 𝑟J𝐺J). 

𝐷J
′  is the payout a member would receive for the year if he were not participating in the 

tontine, assuming he invested in the same portfolio (same 𝑋J), had the same prior balance  
(same 𝑆J−1), and withdrew under the same terms as the payout contract (same 𝑑J, 𝑑J−1).  
By participating in the tontine, and surviving, he boosts his payout by the factor 1 + 𝑟J𝐺J.  
We call this factor his yearly tontine gain. 

Cumulative tontine gain. Referring to (4), we can write the cumulative formula 
for the payout in year 𝑛 in a way that separates the effect of investment return from tontine 
yield, as follows: 

𝐷J
′ = 𝑠0 ∏(1 − 𝑑1)

J−1

1=1
∏(1 + 𝑋1)

J

1=1
 

𝐷J = 𝐷J
′ ∏(1 + 𝑟1𝐺1)

J

1=1
. 

𝐷J
′  is the payout the member would receive if she were not participating in the tontine, 

assuming she invested in the same portfolio (same 𝑋1  values), with the same initial 
contribution (same 𝑠0), and adhered to the same payout contract (same 𝑑1 values).  By 
participating in the tontine, she boosts her payout in year 𝑛 by the factor ∏ (1 + 𝑟1𝐺1)1 .  
We call this factor her cumulative tontine gain for year 𝑛.  It is the product of her yearly 
tontine gains for each of the first 𝑛 years.  If the group gain 𝐺1 equals 1 for each of those 
𝑛 years, then her cumulative tontine gain equals its nominal value of: 

∏(1 + 𝑟1)
J

1=1
= ∏ 1

1 − 𝑞1
= 1

1 − 𝑞1:J

J

1=1
, 

where 𝑞1:J = 1 − ∏ (1 − 𝑞1)1  is her probability of dying during the first 𝑛 years.  In general, 
of course, 𝐺1 does not equal 1, and thus her cumulative gain differs from its nominal value.  
Since each 𝐺1 is non-negative, the cumulative gain is never less than 1. 
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Annualized tontine yield.  We can express the cumulative tontine gain in terms of an 
annualized yield by using the geometric means of the yearly tontine gains, as follows: 

𝑌J = ∏(1 + 𝑟1𝐺1)1 J⁄
J

1=1
− 1. 

We call 𝑌J the member’s annualized tontine yield for year 𝑛.  The annualized tontine yield 
is the average value of the yearly tontine yields, in the sense that if each yearly tontine 
yield for the first 𝑛 years had value 𝑌J, then the payout in year 𝑛 would equal 𝐷J; that is, 
𝐷J

′ (1 + 𝑌J)J = 𝐷J. 

Appendix B:  Computing the Net Mortality Yield 

Suppose that the end-of-year balance of a VIA before the deduction of fees and before 
making its annual payout is 𝑠.  The insurer first deducts fees in the amount of 𝑒𝑠, where 𝑒 
is the expense load in percentage terms.  The insurer then credits a mortality yield of 𝑟 ̂on 
the remaining balance 𝑠(1 − 𝑒), where 𝑟 ̂is the nominal mortality yield calculated using a 
mortality table that includes a reserve margin (i.e., the IAR table) since the insurer must 
price in the systematic mortality risk that it takes on in offering these products.  The net 
mortality gain to the annuitant is 𝑟�̂�(1 − 𝑒) − 𝑒𝑠 = 𝑠(𝑟̂ − 𝑒(1 + 𝑟)̂),  and thus the net 
morality yield, net of fees, is 𝑟̂ − 𝑒 (1 + 𝑟)̂. 

The difference between the two insurer curves shown in Figure 13, in which the expense 
load is 0% and 1% respectively, is (𝑟̂ − 0(1 + 𝑟)̂) − (𝑟̂ − 0.01(1 + 𝑟)̂) = 0.01(1 + 𝑟)̂. 


